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SUMMARY
Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways.
Although studies have examined selected changes in these pathways, the system-wide molecular response
to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling
of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome,
and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-
limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated chore-
ography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair,
and growth factor response, as well as regulatory pathways. Most of these processes were dampened and
some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in
cardiopulmonary exercise response and developed prediction models revealing potential resting blood-
based biomarkers of peak oxygen consumption.
INTRODUCTION

Physical activity is one of the pillars of cardiovascular, immune,

and cognitive health (Warburton et al., 2006). In addition to its

role in promoting health, acute exercise testing can unmask early

stages of disease, improve risk stratification, and provide predic-

tive markers of response to therapy (Arena and Sietsema, 2011;

Palange et al., 2007).

Acute physical activity triggers complex molecular responses

including changes in acute inflammatory markers (e.g., inter-

leukin-6) (Fischer, 2006) and metabolic pathways (e.g., glycol-

ysis and fatty acid oxidation) (Goodwin et al., 2007). However,

previous studies have been limited by the breadth of molecules

measured and biological processes covered. A better under-
1112 Cell 181, 1112–1130, May 28, 2020 ª 2020 Elsevier Inc.
standing of these processes can improve our knowledge of ex-

ercise physiology and guide the development of exercise ana-

lytics in clinical practice.

In this context, we performed longitudinal multi-omic profiling

of blood components (i.e., plasma and peripheral blood mono-

nuclear cells) before and after a controlled bout of acute aerobic

exercise in participants with a wide spectrum of insulin resis-

tance. The goal was to characterize the detailed series of events

that occur in response to exercise and understand how they

relate to fitness measures and how they are affected by insulin

resistance. Several ventilatory parameters are measured during

cardiopulmonary exercise (CPX) testing including peak oxygen

consumption (peak VO2), a marker of fitness and minute ventila-

tion/carbon dioxide production slope (VE/VCO2), a marker of
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respiratory drive, and ventilatory dead space (Arena et al., 2004).

Molecules and pathways associated with peak VO2 have not

been systematically investigated but are expected to be valuable

in understanding cardiovascular fitness and exercise limitations

as well as identifying novel biomarkers of disease (Shah and

Hunter, 2017).

Assessing the molecular response to exercise not only in

healthy individuals but also in individuals at risk for cardiome-

tabolic disease may be particularly relevant with the current

epidemic of obesity and diabetes mellitus (Schüssler-Fiorenza

Rose et al., 2019; Tabák et al., 2012). Insulin resistance is one

of the central pathophysiological processes involved in

obesity and diabetes mellitus that contributes to end-organ

dysfunction. The effects of physical activity on insulin sensi-

tivity have been previously investigated (Bird and Hawley,

2017); however, the molecular response to exercise across

the continuum of insulin-resistant individuals has not been

thoroughly studied.

Our deep longitudinal profiling revealed an orchestrated mo-

lecular choreography in response to acute exercise illustrating

the complex interplay between biological processes across

various organ systems. We also defined healthy molecular pro-

files of peak VO2 and demonstrated the ability of baseline

multi-omic analytes to predict key CPX parameters. We

showed that insulin resistance is associated with altered mo-

lecular response to exercise in several major biological pro-

cesses, and we explored the clinical relevance of molecular

outlier analysis for exercise response at an individual level.

Altogether, this study illustrates the value of deep longitudinal

profiling to decipher complex physiological processes in hu-

mans and provides a valuable open access resource for the in-

tegrated study of multi-level molecular response to acute

exercise.

RESULTS

Cohort Characteristics and Research Design
After overnight fasting, 36 highly characterized participants un-

derwent symptom-limited CPX testing and serial blood collec-

tion (Figure 1A). The cohort was composed of individuals with

an age range of 40–75 years old (mean [±SD] of 59 ± 8), a

body mass index (BMI) of 28.4 ± 5.1 kg/m2, and 58% were

male. Participants were selected to span a wide range of periph-

eral insulin resistance with a steady-state plasma glucose

(SSPG) of 153 ± 67 mg/dL as determined by the modified insulin

suppression test (Schüssler-Fiorenza Rose et al., 2019). Resting

and stress echocardiography, as well as vascular ultrasound,

were performed to exclude heart failure, stress-inducedmyocar-

dial ischemia, or peripheral arterial disease. The majority of the

participants (86%) reached a respiratory exchange ratio (RER)

>1.05 at peak exercise, and the remaining individuals reached

>95%maximal predicted heart rate for their age. Table S1.1 pro-

vides detailed information about participant’s baseline demo-

graphics, echocardiographic, and CPX characteristics. Intrave-

nous blood specimens were collected before exercise

(baseline) as well as 2 min, 15 min, 30 min, and 1 h in recovery.

Fifteen participants also provided a fasted blood sample the

next morning to assess inter-day variability and a subset of the
cohort (n = 14) participated in a control experiment to evaluate

the natural deviation of analytes in the absence of exercise.

In-depth multi-omic profiling was performed on each sample

including plasma proteomics (targeted and untargeted), metab-

olomics (untargeted), lipidomics (semi-targeted), and gene

expression (transcriptomics) from peripheral bloodmononuclear

cells (PBMCs). Complex lipids refer to glycerolipids, glycero-

phospholipids, sphingolipids, and sterol lipids, and targeted pro-

teins were selected given their relevance to exercise physiology

focusing on metabolic, cardiovascular, and immune proteins

(i.e., immunome) (Table S1.2). After data curation and annota-

tion, the final dataset contained a total of 17,662 analytes that

included 15,855 transcripts, 260 proteins from the untargeted

analysis, 109 targeted proteins, 728 metabolites, and 710 com-

plex lipids. A list containing all the detected analytes can be

found in Table S1.3. The longitudinal multi-omic dataset was

used to (1) characterize the dynamic molecular response to

acute exercise, (2) determine molecular associations with peak

VO2 and predict key measurements of exercise physiology, (3)

analyze the differential response to exercise in insulin-resistant

participants, and (4) examine the clinical relevance of outlier

analysis at an individual level (Figure 1B).

Multi-omic Changes in Response to Acute Exercise
The quality of each omic dataset was first examined to ensure

technical reproducibility and the absence of batch effect (Figures

S1A and S2A). One participant underwent CPX testing twice,

10 months apart at the beginning and at the end of the study.

Samples from both sessions clustered together indicating that

the exercise protocol and sample collection were reproducible

(Figure S1B). Molecules significantly affected by exercise were

identified using linear models adjusted for personal baselines,

age, sex, race/ethnicity and BMI. Acute exercise induced exten-

sive changes in 9,815 analytes spanning all omic layers (56.9%

of the detected analytes, false discovery rate [FDR] <0.05) indi-

cating large system-wide changes (Figure 1C; Table S2.1).

Different patterns of changes were observed across the mole-

cule types; transcripts (n = 9,132) exhibited a very rapid response

reaching a maximum/minimum level early post-exercise and re-

turning to baseline within 60 min (93.7%) whereas metabolites

(n = 442) and complex lipids (n = 192) were altered across all

time points and a large proportion (19.5% and 28.9%, respec-

tively) remained significantly different at 60 min in recovery (Fig-

ure S1C). Despite the global molecular impact of exercise, sam-

ples from the same participant tended to cluster together

(Figure 1D) indicating greater individual similarity even in the

presence of the exercise perturbation.

In order to demonstrate that the changes reported are induced

by exercise and not timing or fasting, 14 individuals from the

cohort participated in a control experiment that followed the

same protocol (i.e., sample collection and processing) but

without exercise. Linear models revealed that <2% of the analy-

tes that changed with exercise (targeted proteins, metabolites,

and complex lipids) also varied naturally within a 1-h time win-

dow without exercise (FDR <0.10, Figure S3A). These molecules

all presented a slow decrease (except hydroxybutyrate) whereas

their trajectories with exercise were different either in amplitude

or direction (Figures S3B and S3C). These results demonstrate
Cell 181, 1112–1130, May 28, 2020 1113
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Figure 1. Study Design, Molecular Response to Exercise and Inter-Individual Variability

(A) Overview of the study design including an acute bout of exercise (symptom-limited cardiopulmonary exercise [CPX]), cardiovascular phenotyping, and

longitudinal multi-omic profiling from blood specimens. PBMCs, peripheral blood mononuclear cells.

(B) Analysis plan.

(C) Multi-omic changes in response to acute exercise.

(D) 2D visualization of all multi-omic analytes using t-distributed stochastic neighbor embedding (tSNE) technique. Each dot represents a single sample colored

by participants.

(E) Inter-individual variability at baseline (absolute levels) and in response to exercise (median of fold change to exercise) across molecule types.

(F) Inter-individual variability of targeted proteins (technical, at baseline and in response to exercise).

See also Figures S1, S2, and S3 and Tables S1, S2, and S3.
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that the changes reported in this study are due to exercise and

not explained by the natural variation of the analytes or fasting.

In addition, we found that the level of molecular response to ex-

ercise was at least 2-fold larger than the individual inter-day vari-

ation at 24 h (n = 15, Figures S3D and S3E).

Baseline versus Exercise-Induced Individual Omic
Variability
The inter-individual variability both at baseline and in response to

exercise has not previously been compared across the omic

layers. At baseline, complex lipids presented the highest coeffi-

cient of variation (CV) followed by metabolites, proteins, and

transcripts (62.0%, 46.2%, 38.9%, and 26.9%, respectively; Fig-

ures 1E, S1D, and S2B; Table S3.1). Among lipids, triacylglycerol

(TAG) and diacylglycerol (DAG) species were the most variable

(Figure S2C), consistent with the total TAG content measured

by a clinic test (CV = 57.1%). Similarly, xenobiotics—small mol-

ecules acquired from the environment or generated by the mi-

crobiome—were the most variable metabolites (e.g., secondary

bile acids and indoles, Figure S2D). Enrichment analysis using

variable transcripts (CV >100%, n = 412) highlighted inflamma-

tion as the most variable biological process in the cohort with

pathways such as ‘‘communication between innate and adap-

tive immune cells’’ (FDR = 3.0E�07) (Table S3.2). This was

further supported by the variability in C-reactive protein (CRP),

interleukin 6 (IL-6), and serum amyloid A1 (SAA1) and A2

(SAA2) (Figure 1F; Table S3.1).

The inter-individual variability in response to exercise differed

from baseline with proteins varying the most (CV = 36.8%), fol-

lowed by metabolites, transcripts, and complex lipids (32.1%,

27.7%, and 17.0%, respectively; Figures 1E and S2E; Table

S3.3). Some proteins demonstrated high variability in response

to exercise despite low baseline and technical variability (e.g., in-

terleukins [IL-13 and IL-23] as well as nerve growth factor [NGF])

(Figure 1F). Among metabolic hormones, acylated ghrelin and

leptin differed with high and low variability, respectively, despite

similar technical and baseline variability. Finally, the most vari-

able transcripts in response to exercise (CV >100%, n = 1,334)

were enriched for ‘‘osteoarthritis pathway’’ (FDR = 5.6E�05)

and ‘‘hepatic fibrosis/hepatic stellate cell activation’’ (FDR =

1.6E�04), indicating differential regulation of these pathways in

response to exercise (Table S3.2).

Time-Series System-wide Molecular Analysis
We took advantage of the high sampling density post-exercise to

(1) define longitudinal recovery clusters (FDR <0.05), and (2)

calculate pairwise correlations between molecules within each

cluster. Using c-means clustering, four main clusters of longitu-

dinal trajectories were identified that delineated key biological

processes encompassing early (i.e., energy metabolism, oxida-

tive stress, and immune response) and late events (i.e., energy

homeostasis, tissue repair, and remodeling) (Figure 2A; Table

S2.1). Some molecules increased following exercise and quickly

returned to baseline (cluster 1) whereas others presented a de-

layed increase post-exercise before returning to baseline (cluster

2). The remaining analytes decreased in response to exercise

with some returning to baseline within 1 h (cluster 3) and others

continuing to decrease in recovery (cluster 4). Correlation net-
works were generated for each cluster highlighting potential reg-

ulators of biological processes and novel molecular functions

through unexpected connections.

Cluster 1

Cluster 1 was enriched in molecules (n = 196) associated with

anaerobic metabolism, immune response, oxidative stress, fatty

acid oxidation, and complex lipid metabolism (Figure S4A). As

expected, we observed a sharp increase in plasma concentra-

tions of glycolysis products (i.e., lactate, pyruvate) and tricarbox-

ylic acid (TCA) cycle intermediates (i.e., malate) presumably re-

flecting heightened anaerobic metabolism (Figure 2B) (Lewis

et al., 2010).

Oxidative stress signaling was detected through the accumu-

lation of myeloperoxidase (MPO). MPO was among the most

responsive molecules (in fold change) and emerged as a cen-

trally connected proteomic feature with the greatest number of

connections (n = 45) (Figure 3). MPO is predominantly released

from neutrophils via degranulation and is believed to signal skel-

etal muscle damage or stress and recruit macrophages to

damaged sites (Morozov et al., 2006; Reihmane et al., 2012). It

was connected to all omic layers bridging inflammatory and

growth/protective factors (n = 5) to acylcarnitines (n = 12) and

complex lipids (n = 9) suggesting potential novel roles for MPO

in regulating aspects of inflammation and lipid metabolism. For

example, MPO was strongly associated with the inflammatory

marker neutrophil gelatinase-associated lipocalin (NGAL) (FDR

<1.0E�13) (Otto et al., 2015), and it can potentiate inflammation

by activating endothelial cells to releasemore cytokines (Odoba-

sic et al., 2016).

Inflammatory response post-exercise was evident via the

secretion of IL-6 and tumor necrosis factor alpha (TNF-a) (Gol-

bidi and Laher, 2014; Kinugawa et al., 2003; Vijayaraghava

et al., 2015) (Figure 2C). These changes were concomitant

with an increase of IL-1 receptor antagonist (IL-1RA) and

vascular endothelial growth factor D (VEGF-D) that provide a

compensatory anti-inflammatory response. Pro-inflammatory

properties of TNF-a were confirmed by its association with

many other cytokines (i.e., IL-2, IL-6, IL-7, granulocyte-colony

stimulating factor [G-CSF], monocyte chemoattractant protein

1 [MCP-1], leukemia inhibitory factor [LIF], and eotaxin) (Fig-

ure 3). Interestingly, TNF-a also correlated with pantothenic

acid (vitamin B5), an essential nutrient required for cellular en-

ergy metabolism (Tahiliani and Beinlich, 1991), confirming its

role as a potent metabolic regulator (Chen et al., 2009; Sethi

and Hotamisligil, 1999).

Endothelial markers and vascular adhesion molecules also

constituted key molecules of cluster 1 with vascular cell adhe-

sion molecule-1 (VCAM-1), E-selectin, and endothelial cell-spe-

cificmolecule 1 (endocan 1). VCAM-1was connected to a variety

of molecules (n = 22) including neutrophil inflammatory and

oxidative stress markers (MPO and NGAL), glycolytic products

(lactate and pyruvate), pantothenic acid, and many complex

lipids (n = 14). VCAM-1 has been previously shown to increase

with exercise in untrained individuals as well as in patients with

peripheral vascular disease (Brevetti et al., 2001; Jilma et al.,

1997) and thus may be a marker for cardiovascular function.

Fatty acid oxidation (FAO) was activated by exercise as indi-

cated by the early accumulation of many acylcarnitines (n = 18)
Cell 181, 1112–1130, May 28, 2020 1115
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Figure 2. Multi-omic Changes in Response to Acute Exercise

(A) Clustering of longitudinal trajectories using significant circulating plasma analytes (FDR <0.05).

(B) Expected metabolic changes in response to exercise including glycolysis, TCA cycle and adenine nucleotide metabolism. The dots represent the mean log2

fold change relative to baseline and the bars the standard error of the mean (SEM).

(C) Heatmap of significant proteins representing the median log2 fold change relative to baseline in the cohort. Proteins were grouped by clusters.

(D) Pathway/chemical class enrichment analysis of circulating plasma metabolites and complex lipids. Pathway direction is the median log2 fold change relative

to baseline of significant molecules in each pathway (blue, downregulated; red, upregulated). The dot size represents pathway significance.

(E and F) Heatmaps representing themedian log2 fold change relative to baseline for acylcarnitines (E) and free fatty acids (F). The clusters are indicated on the left

side of the heatmaps.

(G and H) Longitudinal trajectories of significant amino acids (G) and microbial metabolites (H) in response to exercise. The dots represent the mean log2 fold

change relative to baseline and the bars the SEM. *Branched chain amino acids.

(I) Triacylglycerol (TAG) fatty acid composition in clusters 1 and 4. Two-sided Welsh t tests were used to calculate differential enrichment in TAG composition.

See also Figures S4 and S5 and Table S2.
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Figure 3. Integrative Multi-omic Analysis of Circulating Analytes

Pairwise spearman correlation networks of multi-omic measures belonging to each cluster as defined in Figure 2A. Nodes were color-coded by molecule type

and their size represent the median fold change relative to baseline. The top 5 proteins with the greatest number of first order connections in each correlation

network were displayed. Proteins with more than 10 connections are in bold and red. *Cardiac and muscular markers belong to cluster 3 but the decrease is not

significant.

See also Figure S4 and Table S2.
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and free fatty acids (n = 30) (Figure 2D; Tables S2.1 and S2.2).

Distinct trajectories were evident depending on fatty acid

composition. Medium-chain acylcarnitines (i.e., C6:0, C8:0,

C10:0, and C12:0) accumulated the most following exercise

and returned to baseline by 15–30 min in recovery whereas

others (i.e., C6:1, C8:1, C14:0, and C16:1) accumulated to a

lesser extent and returned to baseline more slowly (30 min to

1 h) (Figure 2E). The increased abundance of circulating me-

dium-chain acylcarnitines reflects partial FAO in skeletal mus-

cle (Lehmann et al., 2010; Zhang et al., 2017). The level of

circulating free carnitine demonstrated an inverse trajectory

(cluster 3) suggesting that it is used to form acylcarnitines
from free fatty acid molecules. Free fatty acids exhibited three

main trajectories with some reaching a maximum at 2 min post-

exercise (10–12 carbons, cluster 1), others at 15 min (14–18

carbons, cluster 2), and the remainder decreasing at 2 min in

recovery (20–24 carbons, cluster 3) (Figure 2F). These observa-

tions were confirmed by differential expression analysis be-

tween each consecutive time points (FDR <0.05) (Figure S5A;

Table S2.3) and suggests that long-chain fatty acids, in partic-

ular the ones with 20–22 carbons (C20:1, C20:2, C22:1, C22:2,

and C22:3), are preferentially oxidized during exercise while

partial FAO results in an increased abundance of medium-chain

fatty acids.
Cell 181, 1112–1130, May 28, 2020 1117
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Exercise was also accompanied by a transient accumula-

tion of diverse complex lipids including cholesteryl esters

(CE, n = 20), phosphatidylcholines (PC, n = 23), diacylglycer-

ols (DAG, n = 10), ceramides (CER, n = 9), and sphingomyelins

(SM, n = 8) (Figure 2D). SM, and in particular CER, may be

involved in signaling inflammation in response to exercise

similarly to that described for inflammatory diseases (Ma-

ceyka and Spiegel, 2014).

Cluster 2

Molecules in cluster 2 (n = 148) presented a delayed increase

post-exercise and a large proportion of these molecules were

associated with carbohydrate metabolism. Exercise triggered

the secretion of numerous hormones including steroid and thy-

roid hormones as well as corticosteroids to restore homeostatic

balance (Figures 2D and 3). Correlation networks provided in-

sights into hormonal responses of exercise. We detected an in-

crease of cortisol that can stimulate gluconeogenesis in the liver

leading to a rise of circulating glucose (Kjaer, 1998). We also

observed a significant positive correlation between glucose

and insulin levels (rho = 0.44, FDR = 1.30E�05); insulin secretion

enables cellular glucose absorption to meet tissue energy de-

mand. These changes were concomitant with an accumulation

of fatty acid binding proteins 3 and 4 (FABP3 and FABP4) that

facilitate glucose and free fatty acid uptake in heart tissue and

skeletal muscle (Kusudo et al., 2011). Insulin was the most con-

nected proteomic feature in the cluster (n = 25) and was highly

correlated with the proinsulin C-peptide and amylin (co-secreted

with insulin). Increased glucose metabolism correlated with TCA

cycle constituents (malate, citrate, a-ketoglutarate) and resulted

in a marked increase of products of adenine nucleotide catabo-

lism (i.e., hypoxanthine and xanthine) that are markers of ATP

turnover (Lewis et al., 2010) (Figure 2B). In addition, we detected

a delayed increase of the purine end-product uric acid, presum-

ably due to increased synthesis and decreased renal excretion

(Sutton et al., 1980) (Figure S4). Finally, we also detected an in-

crease of coagulation and hemostasis factors, such as von Wil-

lebrand factor (vWF) and A disintegrin and metalloprotease with

thrombospondin motif repeats 13 (ADAMTS-13), likely in

response to the shear stress induced by treadmill exercise (Sta-

kiw et al., 2008).

Cluster 3

Cluster 3 contained molecules (n = 168) that decreased in

response to exercise and returned to baseline within 1 hour.

The correlation network was centered on two metabolic hor-

mones leptin and ghrelin, suggesting a role in regulation of appe-

tite by exercise (Figure 3). Leptin is predominantly secreted by

adipose tissue whereas ghrelin is produced in the stomach

(Klok et al., 2007) and both have been reported to decrease

following intense exercise and suppress hunger (King et al.,

1994). The levels of many (15 of 20) amino acids changed upon

exercise (FDR <0.05) reflecting a central role in exercise physi-

ology (Figures 2E and S4A). Six amino acids (i.e., glutamic

acid, cystine, tryptophan, serine, threonine, and glycine) be-

longed to cluster 3 suggesting that they were catabolized pre-

sumably by skeletal muscle cells to produce energy (Henriksson,

1991) and re-synthesized in the recovery phase. Four amino

acids (i.e., alanine, tyrosine, glutamine, and proline) presented

an opposite trajectory (cluster 2) accumulating as a product of
1118 Cell 181, 1112–1130, May 28, 2020
increased cellular metabolism. Alanine and glutamine released

in plasma is expected due to muscle ammonia detoxification

(Lewis et al., 2010).

Cluster 4

Molecules in cluster 4 (n = 171) were metabolized in response to

exercise but did not return to baseline within the 1-h recovery

phase (Figure 3). Some amino acids presented this trajectory

and included branched-chain amino acids (BCAAs) leucine,

isoleucine, and valine (Figure 2G). BCAAs are essential amino

acids that cannot be synthesized by the body and are preferen-

tially catabolized by skeletal muscle (Henriksson, 1991) and used

to repair damaged skeletal muscle fibers (Negro et al., 2008).

BCAA catabolism was evident with a marked increase in

branched-chain ketoacids (Figure S4). Many other metabolites

had the same trajectory including microbial metabolites (Fig-

ure 2H), xenobiotics (caffeine metabolism), and bile acids

(Figure S4).

Cluster 4 also contained many TAG species reflecting hydro-

lysis to release fatty acids necessary for energy production.

While most TAG belonged to this cluster, we identified a subset

of TAG that increased transiently following exercise (cluster 1). A

close examination of their fatty acid composition revealed that

TAG in cluster 1 contained fatty acids with more carbons (p =

6.01E�07) and unsaturations (p = 8.51E�06) than TAG enriched

in cluster 4 (Figure 2I). TAG in cluster 1 contained fatty acids with

signaling properties including arachidonic acid (AA), eicosapen-

taenoic acid (EPA), and docosahexaenoic acid (DHA) suggesting

that the transient burst might play a role in signaling (AA) or

compensating for inflammation (EPA, DHA) (Calder, 2013). In

contrast, TAGwith shorter and saturated fatty acidsmay be pref-

erentially used for energy production (Ranallo and Rhodes,

1998). Altogether, our dense sampling revealed dynamically

and functionally distinct subclasses of TAG.

Clinical Correlates of Time-Series Clusters

We also explored associations of key changes described above

with demographics and clinical parameters including body

composition and CPX metrics (Table S2.4). Molecules involved

in metabolic functions tended to associate with body composi-

tion and exercise physiological measures. As an example, the

abundance of leptin at minimum intensity (15 min post-exercise)

was strongly positively associated with estimated fat mass (p =

9.0E�06) and estimated percent fat (p = 8.2E�08) based on

the National Health and Nutrition Examination Survey (NHANES)

formulas (Lee et al., 2017). In contrast, oxidative stress and im-

mune molecules as well as lactate did not associate strongly

with any of the tested parameters (p >0.01), indicating they are

largely independent of body composition and exercise physio-

logical measures over the tested ranges.

Time-Series PBMC Gene Expression Analysis
We investigated PBMC gene expression in response to exercise

both because immune cells play a critical role in muscle stress

response and as a system-wide marker of alterations in gene

expression (Gjevestad et al., 2015; Philippou et al., 2012; Ra-

dom-Aizik et al., 2009; Ulven et al., 2015). Transcript trajectories

were categorized in 4 clusters with up- and downregulated

genes (high and low amplitudes) reaching a maximum response

at 2 min and rapidly returning to baseline within 30–60 min
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Figure 4. PBMC Gene Expression Changes in Response to Acute Exercise

(A) Clustering of longitudinal gene expression trajectories (FDR <0.05).

(B) Pathway analysis using PBMC transcripts significantly changing in response to exercise. Pathway direction is the median log2 fold change relative to baseline

of significant transcripts in each pathway (blue, downregulated; red, upregulated). The dot size represents pathway significance.

See also Figure S5 and Table S2.
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(Figure 4A; Table S2.1). Pathway enrichment analysis using all

significant transcripts at each time point (FDR <0.05) revealed

expected and novel pathways (Figure 4B; Table S2.5).

Exercise induced a robust inflammatory response with

increased transcripts of ‘‘natural killer cell’’, ‘‘Th1 and Th2 activa-

tion’’, ‘‘B cell receptor’’, ‘‘T cell receptor’’, ‘‘nuclear factor kB (NF-

kB) signaling’’, and many interleukin signaling pathways as pre-

viously reported (Carlson et al., 2011; Connolly et al., 2004; Gje-

vestad et al., 2015). We also detected a transient overexpression

of the human leukocyte antigen (HLA) class I genes (i.e., HLA-A,
HLA-B, and HLA-C) that participate in the immune response.

Interestingly, these genes presented dynamic allele-specific

expression (ASE) in response to exercise (FDR <0.05) (Figures

S5C and S5D) suggesting that genetic variation in cis-regulatory

elements may be responsible for HLA class I genes dysregula-

tion in the context of exercise. This observation is consistent

with a recent study reporting differential ASE in many HLA genes

during T cell activation (Gutierrez-Arcelus et al., 2019). Pathways

related to oxidative stress (e.g., ‘‘production of nitric oxide and

reactive oxygen species in macrophages’’) and apoptosis (e.g.,
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‘‘telomerase signaling’’ and ‘‘death receptor signaling’’) were

also altered in response to exercise. These results are consistent

with the early release in circulation of pro- and anti-inflammatory

proteins.

In addition to inflammatory and immune functions, we found a

myriad of pathways associated with cell growth andmobility that

are likely involved in muscle tissue repair and remodeling (Con-

nolly et al., 2004). For instance, angiogenesis and wound healing

pathways were upregulated in response to exercise (i.e., ‘‘PDGF

signaling’’, ‘‘HGF signaling’’, and ‘‘EGF signaling’’). We also de-

tected many pathways associated with cardiovascular and he-

mostasis related signaling highlighting the interconnection be-

tween exercise and cardiovascular health. These pathways

were mainly downregulated and included ‘‘endothelin-1

signaling’’, ‘‘P2Y purigenic receptor signaling pathway’’,

‘‘thrombin signaling’’, and ‘‘cardiac hypertrophy signaling’’. In

addition, we observed dysregulated metabolic pathways

including a repression of ‘‘leptin signaling pathway in obesity’’

consistent with a decrease of circulating leptin abundance and

activation of ‘‘superpathway of inositol phosphate compounds’’

that may be involved in PBMC activation through synthesis of

phosphoinositides (Huang et al., 2007).

Although most pathways returned to baseline 30 min post-ex-

ercise, some pathways persisted formore than 1 h (‘‘Th1 and Th2

activation pathway’’) suggesting longer lasting effects of some

biological processes. Differential gene expression analysis on

consecutive time points provided additional insights into

pathway dynamics (Figure S5B; Table S2.6). In particular, most

pathways were dysregulated immediately post-exercise and

started reverting back 15 min later. It is known that exercise im-

pacts immune cell count in a cell-type-dependent fashion (Mill-

ard et al., 2013; Shinkai et al., 1992). Hence, changes in gene

expression may occur by a combination of changes in cell pop-

ulation (most likely by mobilization) and cellular activation.

Multi-omic Features of CPX Parameters
Several CPX parameters are strongly predictive of outcome in

the general population and in patients with cardiovascular and

metabolic disease. Maximum oxygen consumption (peak

VO2)—a measure of aerobic fitness—is among the best predic-

tors of longevity in the general population (Ladenvall et al.,

2016) as well as survival in patients with heart failure (Sarullo

et al., 2010). In our study, the range of peak VO2 (scaled to

body weight [BW]) was representative of a reference population

(Myers et al., 2017) with a mean (±SD) of 30.6 ± 8.7 mL/kg/min

(Figures S6A and S6B). Ventilatory efficiency measured as the

slope of the minute ventilation to carbon dioxide production rela-

tionship (VE/VCO2 slope) is a strong prognostic marker in heart

failure (Arena et al., 2004). The respiratory exchange ratio

(RER) that is the ratio between the amount of carbon dioxide

(CO2) produced in metabolism and oxygen (O2) used is a marker

of maximum effort (Albouaini et al., 2007). We investigated key

associations of omic measures with peak VO2 at baseline and

in recovery and developed predictive models of CPX parameters

using baseline measurements.

Multi-omic Associations of Peak VO2

We applied linear regression models to find significant associ-

ations with peak VO2 at baseline and at each time point in re-
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covery. To account for potential confounders, we adjusted for

age, sex, and race/ethnicity (Kaminsky et al., 2015) as well as

for body mass index, fat mass, or percent fat estimated with

the NHANES formulas. The overlapping associations pre-

sented in Figure S6C and Table S4.1 were used for down-

stream analysis. We found that a large proportion of omic

measures associated significantly with exercise capacity

with 51.9% of complex lipids and 30.3% of metabolites on

average across all time points (FDR <0.05, Figure 5A). In addi-

tion, we calculated associations with peak VO2 scaled to esti-

mated lean body mass (LBM) using the NHANES formula (Lee

et al., 2017) to further identify correlations adjusted for lean

body mass. As expected, fewer associations were significant,

but a number of key biological processes, in particular lipid

metabolism, persisted as described below (Figure S6D). Table

S4.2 shows associations based on both BW and LBM scaling.

Baseline Associations

Leptin was the strongest correlate of peak VO2 both at baseline

and in recovery (negative association, FDR <1.0E�05) (Table

S4.1). Triglycerides (TAG) and BCAA, known markers of poor

metabolic health (obesity and type 2 diabetes) (Guasch-Ferré

et al., 2016)were also associatedwith lower peak VO2 (Figure 5B;

Table S4.3). In contrast, the transporter of thyroxine and retinol

transthyretin (TTR), a biomarker of LBM (Ingenbleek and Bern-

stein, 2015), hydroxy-fatty acids, corticosterone, hippuric acid,

and bile pigments (i.e., biliverdin and bilirubin) were positively

associated with peak VO2. Hydroxy-fatty acids and corticoste-

rone are known to increase with exercise training (Droste et al.,

2003; Nieman et al., 2013), and hippuric acid is a marker of gut

microbiome diversity (Pallister et al., 2017). Bile pigments have

potent antioxidant properties that may explain their association

with fitness (Wegiel andOtterbein, 2012). Our proteomic analysis

also revealed enrichment in the FXR/RXR and LXR/RXR activa-

tion pathways that are known to be activated by bile acids and

regulate glucose and lipid metabolism (Claudel et al., 2005).

PBMC gene expression enrichment analysis revealed

numerous pathways negatively associated with aerobic fitness

mainly involving cell growth and mobility, immune response,

signaling pathways, cardiovascular signaling, apoptosis, and

metabolism (Figure 5C; Table S4.4). Even thoughmost pathways

were enriched at baseline and at each time point in recovery,

many pathways were the most significant 30 min post-exercise.

Of note many of the associations were stronger when peak VO2

was scaled to BW than LBM. Novel findings include the negative

associations of peak VO2 with the calpain and integrin pathways

that are relevant in sarcopenia and skeletal muscle health (Bo-

wen et al., 2015; Graham et al., 2015). Gene expression analysis

also highlighted the inter-relationship between metabolic and

immune health. In fact, many inflammatory pathways were nega-

tively associated with peak VO2 such as ‘‘role of NFAT in regula-

tion of the immune response’’, ‘‘STAT3 pathway’’, and ‘‘chemo-

kine signaling’’ (Hotamisligil, 2006). These findings were further

supported by the enrichment of ‘‘acute phase response

signaling’’ as well as complement and coagulation systems in

the proteomic profiles (Figure 5D; Table S4.5).

Associations in Recovery

Early in recovery (2–15 min), the strongest associations were

with molecules involved in energy metabolism and included
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Figure 5. Multi-omic analysis of peak VO2

(A) Proportion of analytes associated with peak VO2 (scaled by body weight) as determined by linear regression analysis. Only the molecules significant in three

regression models adjusting for BMI, fat mass, or percent fat were presented.

(B–D) Pathway/chemical class enrichment analysis of metabolites and complex lipids (B) as well as pathway analysis using PBMC gene expression (C) and

circulating proteins (D). Pathway direction is the median beta coefficient of significant molecules in the pathway (blue, negative association; red, positive as-

sociation). The dot size represents pathway significance.

(E) Functional association network using the proteins from the ‘‘inflammatory fitness signature’’ at 15 min in recovery significantly associated with IL-5 at 2 min

post-exercise (Spearman correlation, FDR <0.05). This analysis was performed using the web tool STRING. Line thickness indicates the strength of data support.

Proteins are colored in red to signify a positive association with IL-5.

(F) Pairwise spearman correlation networks of multi-omic measures significantly associated with peak VO2 at 15 min post-exercise. Nodes were color-coded by

molecule type, size represents the betweenness centrality, and the edges were color-coded by association direction.

(G) Molecules selected in the multi-omic peak VO2 prediction model and associated coefficients. MSE, mean square error; FM, full model.

See also Figure S6 and Table S4.
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positive associations with glucose,malate, citrate, lactate, hypo-

xanthine, and xanthine as well as negative associations with

tryptophan, cystine, ornithine, and allantoin (Figure 5B; Table

S4.1). Later in recovery (30–60 min), positive associations were

noted for cortisol and negative associations with long-chain

and polyunsaturated free fatty acids and medium-chain acylcar-

nitines highlighting the importance of energy homeostasis. A

pro-inflammatory signature at 15 min also emerged as positively

associated with peak VO2. This was supported by a pathway

enrichment of the ‘‘role of cytokines in mediating communication

between immune cells’’ (FDR = 7.9E�34, Figure 5D) and the as-

sociation of 16 of 21 interleukins, members of the TNF superfam-

ily (TNF-b, FASL, and CD40L) and interferons (interferon [IFN]-a

and IFN-g) with exercise capacity (Table S4.1). Similarly, many

regulatory or growth factors positively (n = 9) and negatively

(i.e., GDF-15) associated with peak VO2. These data indicate

that a higher level of inflammatory and growth/protective factors

at 15 min in recovery is a critical biological process of aerobic

fitness. This signature was largely independent of LBM (Ta-

ble S4.2).

We examinedwhichmoleculesmight be candidates for driving

this ‘‘fitness inflammatory signature’’. Among all circulating mol-

ecules at 2 min, IL-5 was the molecule that correlated with the

highest number of proteins from the signature at 15 min (n =

14, FDR <0.05, Figure 5E). These proteins were centered on

IL-1b that is an important mediator of the inflammatory response.

IL-5 has been shown to be responsible for the release of IL-1b by

airway smooth muscle cells in the context of asthma (Hakonar-

son et al., 1999). Hence, IL-5 may regulate the ‘‘inflammatory

signature’’ observed 15 min post-exercise. In addition, the anal-

ysis of molecules significantly associated with peak VO2 at

15 min (FDR <0.05) revealed a central topology for transforming

growth factor b (TGF-b), a master regulator of the immune sys-

tem (Li and Flavell, 2008), at the interface between lipid meta-

bolism (negative correlation with 18 individual TAG species)

and inflammation (positive correlation with 35 immune proteins)

(Figure 5F). Hence, TGF-bmay also be involved in regulating the

‘‘fitness inflammatory signature’’.

Multi-omic Prediction of CPX Parameters

In addition to the multi-omic data generated in this study, we

included in the predictive models clinical laboratory (Table

S4.6) and gut microbiome data (Table S4.7) generated within

4 months of the exercise date (54.2 and 112.9 days on average,

respectively). These measurements are relatively stable within

this time range (Zhou et al., 2019). By identifying highly predictive

molecules using a Bayesian network algorithm and ridge regres-

sion modeling, we built predictive models for peak VO2, VE/

VCO2, and RER that had cross-validated R2 of 0.90, 0.75, and

0.81, respectively (Figure 5G; Tables S4.8, S4.9, and S4.10).

Adding omic data to the peak VO2 model significantly improved

its performance when compared with age and BMI alone (R2 of

0.45) that are known factors influencing fitness (Ribisl et al.,

2007). Leptin was confirmed as a critical marker and other mea-

sures such as interleukin 18 receptor accessory protein (IL18-

RAP) emerged from this analysis. The model generated to pre-

dict VE/VCO2 from transcriptomic data alone was superior to

any other single ‘‘ome’’ models (R2 = 0.87; Table S4.9), and

RER could bemoderately predicted with only lipidomic and tran-
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scriptomic data (R2 >0.65) (Table S4.10). As expected, glucose

level was strongly associated with RER and this analysis

revealed potential markers including the proportion of Butyrici-

monas genus in the gut and plasma eicosapentaenoic acid

(EPA). Interestingly, microbial strains were selected in these

models highlighting important roles of the gut microbiome as

was recently demonstrated with the performance-enhancing

microbe genus Veillonella (Scheiman et al., 2019).

Differential Response to Exercise in Insulin-Resistant
Participants
Participants presented a wide range of peripheral insulin resis-

tance with 14 participants categorized insulin-sensitive (IS) and

16 insulin-resistant (IR, SSPG R150 mg/dL). Six other partici-

pants were excluded either because of diabetes mellitus status

or absence of SSPG profile. We investigated the differential

response to exercise in IR relative to IS participants. Individuals

fromboth groups reached comparable RER at peak exercise (p =

0.59) (Figure 6A). Peak VO2 and VE/VCO2 were not significantly

different despite a trend toward lower exercise capacity in IR

participants (p = 0.11).

Using linear mixed models adjusted for personal baseline,

age, sex, race/ethnicity, and BMI, we found 2,279 differential an-

alytes across all omic datasets and categorized them based on

their longitudinal trajectories into 6 distinct time-series patterns

(Table S5.1). Patterns generated from PBMC transcripts are pre-

sented in Figure 6B, whereas results from proteins, metabolites,

and complex lipids are shown in Figures S7A and S7B. Patterns

1 and 2 contained upregulated analytes with a higher amplitude

in IS and IR participants, respectively. Analytes in patterns 3 and

4 were downregulated and patterns 5 and 6 presented opposite

trajectories. As an example, 1,930 PBMC genes were differen-

tially expressed in IR participants (FDR <0.05) with most genes

belonging to patterns 1 and 3 (85% in total) (Figure 5c) suggest-

ing a dampened response of immune cells. This observation was

verified at the pathway level with a stronger response in IS sub-

jects (Figure 6D; Table S5.2). Differential pathways belonged to

various biological processes including inflammatory, cell growth

and mobility, cardiovascular, and metabolism. Differential in-

flammatory response in IR participants was evident with a milder

activation of ‘‘natural killer cell signaling’’ and ‘‘Th1 and Th2 acti-

vation pathway’’. Similarly, activation of apoptosis (‘‘telomerase

signaling’’) and cell growth and mobility pathways (‘‘PDGF

signaling’’) were stronger in IS. These findings are consistent

with other studies describing a diminished PBMC response to

weight gain (Piening et al., 2018), viral infection, and immuniza-

tion (Zhou et al., 2019) in IR subjects reflecting higher basal in-

flammatory profile. Circulating proteins reinforced gene expres-

sion results with a smaller increase of MPO and NGAL

immediately after exercise in IR individuals (Figure S7C). The in-

flammatory protein TNF-a had a similar amplitude of response in

both groups but persisted for a longer time in IR and ultimately

returned to baseline levels 1-hour post-exercise in comparison

to 15 min for IS subjects (Figure S7D). The same pattern was

observed for IL-6 suggesting abnormal cytokine re-absorption

or neutralization in IR participants. More dramatically, pentraxin

3, a marker of acute inflammatory response, increased immedi-

ately post-exercise in IS whereas its level remained low in IR
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Figure 6. Differential Response to Acute Exercise in Insulin-Resistant Participants

(A) Violin plots showing CPX parameters in insulin sensitive (IS) and resistant (IR) participants as defined by themodified insulin suppression test (IR; steady-state

plasma glucose [SSPG] R150 mg/dL). A two-sided Student’s t test (normal distribution) or a Wilcoxon rank-sum test was used for differential analysis.

(B) Patterns of differentially expressed genes in IS and IR participants. The solid line represents the mean and the dashed line represents the 95% confidence

interval.

(C) Pie charts depicting the proportion of significant transcripts (FDR <0.05), proteins (FDR <0.20), metabolites (FDR <0.10), and complex lipids (FDR <0.20) in

each of the six patterns as defined in (B).

(D and E) Pathway analysis using PBMC gene expression (D) and pathway/chemical class enrichment analysis of metabolites and complex lipids (E). Pathway

direction is the median of max/min fold change relative to baseline of significant molecules in the pathway (blue, downregulated; red, upregulated). The color of

the dots represents pathway significance.

See also Figure S7 and Table S5.
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across the whole study (Figure S7C). The higher levels of this in-

flammatory factor at baseline in IR participants may explain this

difference. In addition, some cardiovascular pathways involved

in vascular function (i.e., ‘‘endothelin-1 signaling’’), response to

hypoxia (i.e., ‘‘HIF-1a signaling’’), and nitric oxide synthesis

(i.e., ‘‘eNOS signaling’’) were impaired in IR with a mild upregula-

tion relative to a repression in IS.

Although most genes responded in the same direction, some

responded in opposite directions (n = 45 and 17 in pattern 5 and

6, respectively). Pathway enrichment analysis revealed that

‘‘protein ubiquitination pathway’’ (FDR = 3.9E�06) was upregu-

lated in IS and downregulated in IR. Protein ubiquitination is a

key mechanism involved in protein turnover regulation in skeletal

muscle following exercise (Cunha et al., 2012) suggesting that IR

individuals have altered proteasome activity in PBMCs.

Similar analysis using circulating metabolites revealed that

many major biological pathways impacted by exercise were

altered in IR participants (Figure 6E; Table S5.3). For instance,

lipid (increase of acylcarnitines and medium-chain free fatty

acids), carbohydrate (increase of glucose), and amino acid

metabolism (decrease of those used for energy production) re-

sponded more strongly in IS resulting in a stronger accumulation

of malate (TCA cycle), lactate, hypoxanthine and xanthine (ATP

turnover), and alanine (muscle ammonia detoxification) (Fig-

ure S7E; Table S5.1). Consistent with these observations, meta-

bolic hormones including gastric inhibitory polypeptide (GIP),

leptin, and ghrelin decreased more strongly in IS following exer-

cise (Figure S7C). In contrast, insulin was among the few mole-

cules that responded more strongly in IR participants. This might

be expected since a higher amount of insulin is necessary for pe-

ripheral tissues to absorb circulating glucose in insulin-resistant

individuals. In addition, insulin secretion was delayed reaching a

maximum 15 min post-exercise in IR versus 2 min in IS. In

contrast, cortisol response had a similar amplitude in IS and IR

but returned to baseline 1 h post-exercise in IR whereas it re-

mained high in IS individuals. In addition, we observed an

impaired energy homeostasis with insulin resistance. Long-

and polyunsaturated free fatty acids are oxidized during exercise

to produce energy and are resynthesized in recovery. The level of

these molecules increased by 15 min post-exercise and re-

mained high until 30 min in IS subjects whereas their level stayed

low in IR participants suggesting an abnormal synthesis or utili-

zation of these free fatty acids.

In contrast with transcripts, proteins, and metabolites, most

complex lipids (51%) accumulated more strongly in IR individ-

uals following exercise (pattern 2, i.e., CE and SM) (Figures 6C

and 6E; Table S5.3). Unsaturated TAG (4–12 unsaturations)

accumulated immediately post-exercise in IR but not in IS partic-

ipants, whereas saturated TAG (0–3 unsaturations) decreased

more in IS suggesting a more efficient hydrolysis.

Multi-omic Outlier Analysis Highlights Personal
Abnormalities
We examined the number of outlier molecules (FDR <0.05) at

baseline (absolute levels) and in response to exercise (fold

change) across multi-omic datasets. Four participants pre-

sented outlier molecular profiles not initially suspected by their

clinical features (Figures S8A and S8B). Participant ZLTUJTN
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was borderline anemic with increased red blood cell volume dis-

tribution (Table S4.6) and presented abnormal transcript profiles

at baseline and in response to exercise involving metabolic (e.g.,

‘‘iron homeostasis’’ and ‘‘heme biosynthesis’’), immune (e.g.,

‘‘interferon signaling’’ and ‘‘activation of IRF by cytosolic pattern

recognition receptors’’), and hypoxia pathways (e.g., ‘‘hypoxia

signaling in cardiovascular system’’ and ‘‘iNOS signaling’’) (Table

S6). Follow-up analysis revealed alpha thalassemia carrier sta-

tus. Participant ZVM4N7A had borderline elevated platelet

counts and had evidence of impaired ‘‘NF-kB signaling’’

(FDR = 6.3E�04) following exercise, consistent with a recently

described interaction between NF-kB and platelet functions (Ko-

jok et al., 2019). Finally, participant ZL63I8R had an outlier pro-

tein profile consisting of immune proteins, growth factors, and

proteins involved in hemostasis, blood clot, and lipidmetabolism

(Figure S8C). No further clinical interpretation was made due to

lack of clinical follow-up on this participant. Altogether, these re-

sults show that individuals can present large differences in their

molecular composition and that deep individual molecular pro-

files may be useful to detect subclinical conditions.

DISCUSSION

Deep longitudinal molecular profiling coupled with dense sam-

pling revealed a detailed molecular choreography of acute exer-

cise (Figure 7). These biological processes include early (i.e., en-

ergy metabolism, oxidative stress, and immune response) and

late events (i.e., energy homeostasis, tissue repair, and remodel-

ing). The high-resolution timing of bioenergetic molecules (i.e.,

acylcarnitines, medium- and long-chain fatty acids, amino acids,

and TAG) revealed novel insights into energy utilization and pro-

duction pathways. Systematic regression analyses led to the dis-

covery of a ‘‘fitness inflammatory signature’’ 15min post-exercise

that was centered on IL-1b and potentially regulated by IL-5 and

TGF-b. We also showed that a small number of resting blood-

based analytes can potentially predict exercise testing parame-

ters, including peak VO2 (a proxy for fitness) and, to a lesser

extent, ventilatory efficiency.We have also found that the exercise

response is influenced by insulin-resistant status that modulates

several key biological processes including inflammation and car-

diovascular response pathways. Finally, molecular individuality at

baseline and in response to exercise illustrated the clinical rele-

vance of outlier molecules at an individual level.

Longitudinal multi-omic profiling revealed thousands of mole-

cules affected by an acute bout of exercise. These changes were

not observed in the control longitudinal experiment. Our time-se-

ries clustering and network analysis revealed complex interplays

between various compartments (i.e., skeletal muscle, adipose

tissue, immune cells, liver, and cardiovascular system) and iden-

tified potential regulators of important biological processes

involved in exercise. In particular, crosstalks between meta-

bolism, oxidative stress, and immunity were observed atmultiple

instances.

Myeloperoxidase (MPO)—a marker of oxidative stress

secreted by neutrophils—was among the most increased pro-

tein in the acute recovery phase of exercise (cluster 1) where it

presented a strong central connectivity bridging pro-inflamma-

tory (i.e., NGAL, IL-7), growth/protective factors (i.e., IL-1RA),



Figure 7. Summary of the Main Discoveries

Discoveries were classified in four categories: time-series molecular analysis, cardiopulmonary exercise (CPX) analytics, insulin resistance (IR) differential

analysis, and individuality and outlier analysis. FAO, fatty acid oxidation; AA, amino acid; BCAA, branched-chain amino acids; TAG, triacylglycerols; OH-FA,

hydroxy fatty acids; CV, coefficient of variation.
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as well as metabolic factors (i.e., acylcarnitines). Experimental

studies document an increase in skeletal muscle MPO in both

trained and untrained rats, a response that is attenuated by

training (Morozov et al., 2006). The increase in MPO activity is

not limited to skeletal muscle but also involves the heart and

the liver (Belcastro et al., 1996). In more intense exercise such

as marathons, the increase in MPO activity also coincides with

an increase in circulating cardiac biomarkers of injury, wall stress

and inflammation (Melanson et al., 2006). In our study, the de-

gree of MPO elevation was not significantly related to the respi-

ratory exchange ratio or maximal oxygen consumption, suggest-

ing a non-linear relationship between oxidative stress and

exercise intensity. Other key molecules bridging inflammation

and metabolism included tumor necrosis factor alpha (TNF-a)

secreted by adipose tissue and vascular cell adhesion mole-

cule-1 (VCAM-1). To a lesser extent, growth differentiating fac-

tor-15 (GDF-15), which is a strong marker of survival in cardio-

metabolic disease (Wallentin et al., 2013), was also increased

in the early phase of exercise recovery. In addition, we reported
a delayed increase of a myriad of steroid hormones and cortico-

steroids post-exercise (cluster 2) that are essential to energy ho-

meostasis. Among others, the rise of cortisol was concomitant

with circulating level of glucose and several factors facilitating

glucose cellular absorption such as insulin and fatty acid binding

proteins 3 and 4 (FABP3 and FABP4) as well as downstream fac-

tors reflecting energy production (i.e., TCA cycle constituents

and markers of ATP turnover). FABP3 has been proposed as

an early marker of myocardial ischemia (Tanaka et al., 1991)

and the observation of its increase post-exercise invites further

investigation on its potential value during exercise testing.

Our study also adds granularity on the potential role of species

of acylcarnitines, free fatty acids, complex lipids, and amino acids.

Depending on their number of carbons and unsaturations, free

fatty acids were divided among different time clusters with longer

chain fatty acids decreasing as they are metabolized. In contrast,

medium-chain free fatty acid and, by extension, medium-chain

acylcarnitines accumulated reflecting partial fatty acid oxidation

in skeletal muscle. Ketone bodies were found to increase at later
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time points post-exercise (15–60 min), presumably originating

from fatty acid oxidation in the liver (Laffel, 1999). Phase 2 clinical

trials in heart failure suggest a potential beneficial role of ketone

bodies as energetic substrate (Nielsen et al., 2019) representing

an active area of investigation. We have also found that the trajec-

tory of some complex lipids was dependent on their carbon and

unsaturation levels. Even though most triacylglycerols decrease

in recovery and are presumably hydrolyzed for energy production

(Ranallo and Rhodes, 1998), a subset containing long-chain poly-

unsaturated fatty acids increased immediately post-exercise

(cluster 1). This finding may reflect pro- or anti-inflammatory

signaling because these TAG contain arachidonic acid, eicosa-

pentaenoic acid, and docosahexaenoic acid (Calder, 2013). We

also detected other complex lipids following the same trajectory

including cholesterol esters and sphingomyelins. Interestingly,

these processes were primarily observed in insulin-resistant par-

ticipants indicating a dysregulation in complex lipidmetabolism at

the class and fatty acid composition levels. Amino acids also pre-

sented different temporal profiles depending on their type (i.e.,

essential versus non-essential amino acids) and whether they

are catabolized for energy generation (i.e., branched-chain amino

acids) or produced due to heightened cellular metabolism (i.e.,

alanine and glutamine). We also observed an increase of neuroac-

tive metabolites acetylcholine and kynurenic acid in response to

exercise that links physical activity to mental health. The latter is

a product of tryptophan metabolism, is produced in exercise-

stimulated skeletal muscle, and has been shown to deliver antide-

pressant activity (Agudelo et al., 2014).

Transcriptomic analysis of PBMCs revealed changes beyond

the immune and oxidative stress pathways providing a window

to systemic biological processes. In particular, dynamic tran-

scripts informed on tissue repair and remodeling, cardiovascular

health, vascular and epithelial growth factors, metabolism, and

apoptosis. Tissue repair and remodeling was evident via the up-

regulation of the insulin growth factor-1 (IGF-1) signaling

pathway that activates by phosphorylation serine/threonine ki-

nases (p70S6K) that in turn increases protein synthesis and re-

pairs the damaged muscle (Schiaffino and Mammucari, 2011).

Cardiovascular processes included endothelin-1, thrombin, as

well as nitric oxide signaling. It is also interesting to note a

decrease in the mTOR signaling pathways following exercise;

attenuation of the liver mTORC1 pathway is often associated

with increased lifespan (Sengupta et al., 2010).

Although most analytes presented a rather homogeneous

response to exercise across participants, certain molecules

had a high inter-individual variability such as metabolic hormone

ghrelin as well as interleukins (IL-13 and IL-23) and nerve growth

factor. Such molecules potentially carry valuable clinical infor-

mation. Systematic outlier analysis highlighted participants

with abnormal molecular profiles relative to the cohort that

were associated with potential clinical conditions and informed

on dysregulated biological processes associated with alpha

thalassemia carrier status and anemia. Hence, personalized mo-

lecular exercise profiling may prove to be valuable for disease

detection and understanding how exercise impacts disease-

related pathways.

Baseline metabolic health status of participants was an impor-

tant determinant of exercise capacity. As an example, high base-
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line leptin, BCAA, TAG, and low abundance of the microbial

metabolite hippuric acid—reflecting poor metabolic health—

were associated with lower peak VO2. These findings extend

studies of low (LCR) and high capacity runners (HCR) rats

describing skeletal muscle energy plasticity as a critical aspect

of oxygen consumption (Koch et al., 2011; Overmyer et al.,

2015). Several pathways previously associated with mitochon-

drial function, cell adhesion, and extracellular matrix were en-

riched in skeletal muscles and differed between HCR and LCR

lines (Ren et al., 2016). Interestingly, two of the most significant

pathways in association with peak VO2 in our study (i.e., calpain

and integrin pathways) are involved in muscle regulation. The

calpain pathway has been associated with sarcopenia, an

important mechanism of frailty in the aging population (Bowen

et al., 2015). The integrin pathway mediates the control of insu-

lin-like growth factor receptor (IGF1R) signaling and in turn reg-

ulates the muscular response to exercise (Legate et al., 2009).

Our study also revealed a complex role of post-exercise inflam-

matory response in aerobic fitness with a higher level of inflam-

matory and growth/regulatory factors at 15 min in recovery

that strongly associated with higher peak VO2. Our data suggest

that this ‘‘fitness inflammatory signature’’ was centered on IL-1b

and may be regulated by IL-5 and/or TGF-b, a novel potential

trigger of exercise-induced inflammation. Finally, our analysis

of omic associations with oxygen consumption highlights the

importance of indexing as the strength of associations varies de-

pending on indexing to total body weight or estimated lean

body mass.

Participants in our study were selected to span awide range of

insulin resistance that allowed investigation of differential

response to exercise providing insights into the pathophysiology

of metabolic conditions. Significant differences were noted in

several biological processes impacted by exercise including in-

flammatory, oxidative stress, vascular, hypertrophic, and cell

growth pathways. In addition to a reduced inflammatory

response in insulin-resistant participants, often related to a

higher baseline activation (Piening et al., 2018; Zhou et al.,

2019), we observed a reduced efficiency to oxidize free fatty

acids, produce energy, and restore energy homeostasis. We

also detected differential response in glutamate metabolism

that is implicated in coronary heart disease (Qi et al., 2013).

Furthermore, cardiovascular signaling showed marked differ-

ences (often in opposite direction) and included, endothelin-1,

a vasoconstrictor and therapeutic target in vascular biology

(Marasciulo et al., 2006), thrombin, a critical enzyme in the coag-

ulation pathway (Yanagisawa, 1994), and cardiac beta-adren-

ergic signaling found to be reduced in heart failure syndrome

or autonomic disorders (Lymperopoulos et al., 2013).

This work should be assessed in the context of its limitations.

Our cohort was relatively small (n = 36) and generally of older age

and consisted of a diverse group of participants (BMI, insulin

resistance status). However, to our knowledge, our deep pheno-

typing combined with a personalized exercise test is one of the

most comprehensive molecular studies ever performed. Impor-

tantly, most of the data are open access. Other large initiatives

underway, of note, Molecular Transducers of Physical Activity

Consortium (NCT03960827), will scale the concepts presented

here with muscle and fat biopsy.
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In conclusion, our study provides an in-depth and integrated

multi-omic profiling of the response to acute exercise. The trans-

lation potential of the study resides in the discovery of a prom-

ising resting biomarker signature of aerobic fitness as well as

in demonstrating the value of exercise molecular testing in iden-

tifying key differences in the mechanisms of insulin resistance.

Ongoing studies will help standardize exercise omic testing as

well as refine reference ranges for clinical ormechanistic studies.
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michael

Snyder (mpsnyder@stanford.edu).

Materials Availability
All unique reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability
Raw and processed omic data (transcriptome, targeted and untargeted proteome,metabolome, lipidome) are hosted on our portal at

http://hmp2-data.stanford.edu/index.php under the substudy Exercise. Microbiome and clinical laboratory data are provided in Ta-

bles S4.6 and S4.7, respectively.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participant Recruitment and IRB Consent
Study participants were enrolled as ‘‘healthy volunteers’’ in the framework of the NIH integrated HumanMicrobiome Project 2 (iHMP)

(Zhou et al., 2019). Inclusion and exclusion criteria are described in detail elsewhere (Schüssler-Fiorenza Rose et al., 2019). Among

the iHMP cohort, 36 subjects provided informed written consent to participate in the exercise study under a research study protocol

approved by the Stanford University Institutional Review Board (IRB 23602) and 33 individuals agreed to make all of their data open

access. Participants were screened for contraindications for exercise testing and comorbidities with a basic health questionnaire and

didn’t have an active infection, history of cancer or autoimmune disease. No participant had evidence of stress-induced wall motion

abnormality during stress testing, severe clinical heart failure or symptomatic atherosclerosis. Detailed demographic information can

be found in Table S1.1. Thirty out of 36 participants underwent the modified insulin suppression test to determine steady-state

plasma glucose (SSPG) levels as described (Schüssler-Fiorenza Rose et al., 2019) and classify the participants as insulin sensitive

(n = 14, SSPG <150 mg/dl) or insulin resistant (n = 16, SSPG R150 mg/dl). The remaining six individuals didn’t perform the test

because of medical contraindications or other reasons. The cohort was composed of normoglycemic (n = 16), prediabetic (n =

16) and diabetic (n = 4) individuals as determined by fasting plasma glucose (FPG) and hemoglobin A1C (HbA1C) levels measured

within 2months of the exercise date (prediabetic range: 100mg/dl% FPG<126mg/dl or 5.7%%HbA1C< 6.5%; diabetic range FPG

R 126 mg/dl or HbA1C R 6.5%).

METHOD DETAILS

Study Design
Overnight-fasted participants (10-12 hours) arrived at Stanford Clinical Translational Research Unit (CTRU) at 7:00 am in themorning.

Resting vital signs including heart rate, blood pressure, oxygen saturation, height andweight aswell as blood glucosewere recorded.
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Blood was collected from participants at baseline (7:15 am) and echocardiography as well as vascular ultrasound were performed at

rest (7:45 am). Afterward, the study subjects underwent symptom-limited cardiopulmonary exercise (CPX) testing (8:00 am) and

received a stress echocardiography. Additional blood samples were collected longitudinally post-exercise.

Transthoracic Echocardiography
Participants underwent transthoracic echocardiography using commercially available echocardiographic systems (iE33; Philips

Medical Imaging, Eindhoven, the Netherlands). Post-stress images were acquired immediately post-exercise, as per international

consensus guidelines and all participants had satisfactory imaging. Digitized echocardiographic studies were analyzed on Xcelera

workstations in accordance with published guidelines of the American Society of Echocardiography (ASE) (Lang et al., 2015). Left

ventricular diameters were indexed on height, while mass and volumes were indexed on body surface area. Left ventricular ejection

fraction (LVEF) was calculated by modified biplane Simpson’s rule of apical imaging (Wilson et al., 1998). Left ventricular global lon-

gitudinal strain (LV GLS) was calculated from apical imaging onmanual tracings of the mid wall with the formula for Lagrangian Strain

% = 100 x (Lt - L0)/L0), as previously described (Smith, 2016). With tissue doppler imaging (TDI), we used peak myocardial early dia-

stolic velocity at the lateral mitral annulus and the assessment of trans mitral to TDI early diastolic velocity ratio (E/e’) (Lee et al., 2010;

McClelland et al., 2015). Left atrial volumewas calculated by the biplane disk summation technique and indexed to body surface area

as described by the American Society of Echocardiography (Lang et al., 2015).

Vascular Ultrasound
Screening for subclinical atherosclerosis was performed using vascular ultrasound of the carotid and femoral arteries with a 9.0 MHz

Philips linear array probe and iE33 xMATRIX echocardiography system (Philips, Andover, MA, USA). Vascular stiffness was assessed

using central pulse wave velocity (PWV). PWVwas calculatedwith the formula distance (m)/transit time (s) by assessing the flowof the

carotid and femoral arteries separately and normalizing with electrocardiogram (Calabia et al., 2011). No participant had severe

atherosclerotic plaque exceeding 30% in diameter stenosis or abdominal aortic aneurysms.

Symptom-limited Cardiopulmonary Exercise Testing
Symptom-limited cardiopulmonary exercise (CPX) testing was performed according to individualized ramp-treadmill protocols

(Myers and Froelicher, 1993). Participants were encouraged to exercise to maximal exercise capacity with a target duration of 8-

12 minutes following the ramp protocol tuned to individuals cardiovascular fitness as determined by a questionnaire. All participants

ceased exercise due to dyspnea and/or fatigue and none experienced chest pain or terminated the study due to arrhythmia. Venti-

latory efficiency (VE), oxygen consumption (VO2), volume of carbon dioxide production (VCO2) and other CPX variables were ac-

quired breath-by-breath and averaged over 10 s intervals (Omnia CPET, CosMed USA, Concord, CA, USA). A respiratory exchange

ratio (RER; VCO2/VO2) >1.05, heart rate (HR) >85%of predictedmaximum and Rating of Perceived Exertion (RPE 6-20; Borg Percep-

tion, Hasselby, Sweden) were determined to indicate peak effort. Peak oxygen uptake VO2 was calculated as the highest VO2 levels.

VE and VCO2 responses throughout exercise were used to calculate the VE/VCO2 slope via least-squares linear regression (y = mx +

b, m = slope) (Arena et al., 2003).

Blood Collection and Sample Preparation
Intravenous blood from the upper forearm was drawn from overnight-fasted participants at baseline (before exercise) as well as

2 min, 15 min, 30 min, and 1h post-exercise. A subset of the participants (n = 15) also donated a blood sample fasted the next

morning. Samples at baseline and 1-hour time points were collected in the CTRU while samples collected 2 min, 15 min and

30 min post-exercise were collected in the exercise laboratory. Additional samples were collected and analyzed at later time

points (i.e., 2, 4 and 6 hours) but the effect of exercise at these time points was difficult to determine due to the confounding

impact of food consumption after the 1- and 4-hour time points. For time points 2 min, 15 min and 30 min, the intravenous can-

nula was flushed with 5 mL of normal saline after each blood draw to prevent obstruction and contamination. Specimens were

immediately placed on ice after collection to avoid sample deterioration and processed together immediately after collection of

the last sample (9:00 am). Blood was collected in a purple top tube vacutainer (BD), layered onto Ficoll media and spun at

2,000 rpm for 25 min at 24�C. The top layer EDTA-plasma was pipetted off, aliquoted and immediately frozen at �80�C. The
peripheral blood mononuclear cells (PBMC) layer was collected, counted via cell counter and aliquots of PBMCs were further

pelleted and flash-frozen. Multi-level molecular profiling was performed on all blood samples including gene expression from

PBMCs (transcriptomics), proteins (targeted and untargeted proteomics), metabolites (untargeted metabolomics), and complex

lipids (semi-targeted lipidomics) from plasma. Transcriptomics, metabolomics and targeted proteomics were performed on

fresh EDTA-plasma aliquots while untargeted proteomics and lipidomics were performed on EDTA-plasma that went through

one freeze-thaw cycle. In order to assess natural molecular deviation in absence of exercise, a subset of the cohort (n = 14)

participated in a control experiment in the absence of exercise and donated blood samples following the exact same protocol

as described above. Intravenous blood samples were collected in purple top tube vacutainer (BD) at the same time of the day

and at the same intervals. EDTA-plasma and PBMC cell pellets were then processed and aliquoted. The 2 min time point was

not collected due to the close proximity and presumably similarity with the baseline time point.
Cell 181, 1112–1130.e1–e8, May 28, 2020 e3



ll
Article
RNA sequencing from Peripheral Blood Mononuclear Cells (PBMCs)
RNA extraction and library preparation

The transcriptome was evaluated by RNA sequencing (RNA-seq) from bulk PBMCs. PBMCs were thawed on ice, and subsequently

lysed and processed to DNA, RNA and protein fractions using silica-membrane spin columns from the AllPrep DNA/RNA/Protein kit

(cat# 80004, QIAGEN, Chatsworth, CA, USA). PBMCs were processed in a randomized order. A Bravo NGS Workstation (Agilent,

Santa Clara, CA, USA) was used to perform automated preparation of strand-specific RNA-seq libraries using the TruSeq Stranded

Total RNA with Ribo-Zero Gold kit (cat# RS-122-2301, Illumina, San Diego, CA, USA). According to manufacturer’s protocol, total

RNA was depleted of mitochondrial and cytoplasmic ribosomal RNA followed by fragmentation and random priming to synthesize

cDNA fragments. Barcoded sequencing adapters were ligated to cDNA inserts and enriched using PCR to create the final cDNA li-

braries. Qualitative and quantitative assessment of libraries was performed using a Fragment Analyzer (Advanced Analytical Tech-

nologies, Ankeny, IA, USA). Quantified, barcoded libraries were normalized andmixed at equimolar concentrations into amultiplexed

sequencing library.

RNA sequencing and data processing

Pooled libraries were sequenced on a HiSeq 4000 sequencer (Illumina, San Diego, CA, USA) to a depth of 30million reads per sample

using a paired-end 100 base pair run configuration. Four samples were sequenced in each pool to correct for potential batch effect

and longitudinal samples from the same participants were mixed in the same pool. Sequencing data were demultiplexed and con-

verted into fastq files using Illumina’s bcl2fastq conversion software (v2.20). Quality and adaptor trimming along with filtering of rRNA

reads was performed using BBDuk (v37.22). The decontaminated reads were mapped to personal genomes using STAR aligner

(v2.5.1b) by modifying the GRCh38 reference genome at variant sites called for each participant through exome sequencing.

Gene quantification was performed using the tool htseq-count from the Python package HTSeq (v0.9.1). The GENCODE v28 anno-

tation was used to define genomic features where each gene is considered as the union of all its exons. After normalization of read

counts to the sequencing depth in each sample, genes with an average expression below 10 were discarded. Missing values were

imputed using the k-nearest neighbors’ method (‘impute.knn’ function) in the R package ‘impute’ (v1.52.0). Two datasets were gener-

ated, one containing read counts normalized to the sequencing depth in each sample (original), and another that was further pro-

cessed by applying the variance-stabilizing transformation (VST) in R package ‘DESeq20 (v3.9).

Untargeted Proteomics from Plasma by Sequential Window Acquisition of all Theoretical (SWATH)-MS
Sample preparation and data acquisition

Plasma samples were thawed on ice, prepared and analyzed in a randomized order. Tryptic peptides were generated from 8 mg of

undepleted plasma proteins and separated on a NanoLC 425 System (Sciex, Redwood City, CA, USA). 5 ml/min flow was used with

trap-elute setting using a ChromXP C18 trap column 0.5 3 10 mm, 5 mm, 120 Å (cat# 5028898, Sciex, Redwood City, CA, USA).

Tryptic peptides were eluted from a ChromXP C18 column 0.3 3 150 mm, 3 mm, 120 Å (cat# 5022436, Sciex, Redwood City, CA,

USA) using a 43-minute gradient from 4%–32% Bwith 1-hour total run. Mobile phase solvents consisted of 92.9%water, 2% aceto-

nitrile, 5% dimethyl sulfoxide, 0.1% formic acid (A) and 92.9% acetonitrile, 2% water, 5% dimethyl sulfoxide, 0.1% formic acid (B).

MS analysis was performed using SWATH acquisition on a TripleTOF 6600 System equipped with a DuoSpray Source and 25 mm I.D.

electrode (Sciex, Redwood City, CA, USA). Variable Q1 window SWATH Acquisition methods (100 windows) were built in high sensi-

tivity MS/MS mode with Analyst TF Software (v1.7). A quality control (QC) consisting of an equimolar pool of all the samples in the

study was injected at the beginning and end of each batch. Samples were run in two batches and QC data were used to control

for batch effect. Longitudinal samples from the same participants were run in the same batch.

Data processing

Peak groups from individual runs were statistically scored with pyProphet tool (v2.0.1) and all runs were aligned using TRIC strategy

(Röst et al., 2016). A final data matrix was produced with 1% FDR at peptide level and 10% FDR at protein level. Protein abundances

were computed as the sum of the three most abundant peptides (top3 method). Batch effect was corrected by applying median-

normalization and proteins detected in less than 2/3 of the samples were discarded. Missing values were imputed by drawing

from a random distribution of low values in the corresponding sample (Tyanova et al., 2016). Untargeted protein levels were reported

as spectral counts.

Targeted Proteomics from Plasma by Immunoassays
Plasma samples were thawed on ice, prepared and analyzed in a randomized order. Levels of circulating cytokines and growth fac-

tors were measured in plasma using a 63-plex Luminex antibody-conjugated bead capture assay (eBiosciences/Affymetrix). Meta-

bolic hormones were measured using MILLIPLEX MAP Human Metabolic Hormone Magnetic Bead Panel - Metabolism Multiplex

Assay (HMHEMAG-34K, Millipore, Burlington, MA, USA). Cardiovascular riskmarkers weremeasured usingMILLIPLEXMAPHuman

Cardiovascular Disease (CVD) Magnetic Bead Panel (1 to 4) - Cardiovascular Disease Multiplex Assay (HCVD1MAG-67K,

HCVD2MAG-67K, HCVD3MAG-67K, HCVD4MAG-67K, Millipore, Burlington, MA, USA). Experiments were performed by the Stan-

ford Human Immune Monitoring Center (HIMC) according to the manufacturer’s recommendations and read using a Luminex 200

instrument with a lower bound of 20 beads per sample per analyte. Custom assay control beads by Radix Biosolutions were added

to all wells for Human 63-plex assay. Longitudinal samples from the same participant were analyzed on the same plate. Inter-plate

variability was corrected using the median of inter-plate ratios for four representative samples analyzed in each plate. Raw mean
e4 Cell 181, 1112–1130.e1–e8, May 28, 2020



ll
Article
fluorescence intensity (MFI) values were used for the analysis. Missing values (bead count below 20) were imputed using the k-near-

est neighbors’ method (‘impute.knn’ function) in the R package ‘impute’ (v1.52.0). Targeted protein levels were reported as MFI.

Untargeted Metabolomics from Plasma by Liquid Chromatography (LC)-MS
Sample preparation and data acquisition

Plasma samples were thawed on ice, prepared and analyzed in a randomized order as previously described (Contrepois et al., 2015).

Briefly, metabolites were extracted using 1:1:1 acetone:acetonitrile:methanol, evaporated to dryness under nitrogen and reconsti-

tuted in 1:1 methanol:water before analysis. Metabolic extracts were analyzed four times using HILIC and RPLC separation in

both positive and negative ionization modes. Data were acquired on a Q Exactive plusmass spectrometer for HILIC and a Q Exactive

mass spectrometer for RPLC (Thermo Scientific, San Jose, CA, USA). Both instruments were equipped with a HESI-II probe and

operated in full MS scan mode. MS/MS data were acquired on quality control samples (QC) consisting of an equimolar mixture of

all samples in the study. HILIC experiments were performed using a ZIC-HILIC column 2.1 3 100 mm, 3.5 mm, 200Å (cat#

1504470001, Millipore, Burlington, MA, USA) and mobile phase solvents consisting of 10 mM ammonium acetate in 50/50 acetoni-

trile/water (A) and 10 mM ammonium acetate in 95/5 acetonitrile/water (B). RPLC experiments were performed using a Zorbax SBaq

column 2.13 50 mm, 1.7 mm, 100Å (cat# 827700-914, Agilent Technologies, Santa Clara, CA, USA) and mobile phase solvents con-

sisting of 0.06% acetic acid in water (A) and 0.06% acetic acid in methanol (B). Data quality was ensured by (i) injecting 6 and 12 pool

samples to equilibrate the LC-MS systemprior to run the sequence for RPLC andHILIC, respectively, (ii) injecting a pool sample every

10 injections to control for signal deviation with time, and (iii) checkingmass accuracy, retention time and peak shape of internal stan-

dards in each sample.

Data processing

Data from each mode were independently analyzed using Progenesis QI software (v2.3, Nonlinear Dynamics). Metabolic features

from blanks and that didn’t show sufficient linearity upon dilution in QC samples (r <0.6) were discarded. Only metabolic features

present in >2/3 of the samples were kept for further analysis. Inter- and intra-batch variation was corrected using the LOESS (locally

estimated scatterplot smoothing local regression) normalization method on QC injected repetitively along the batches (span = 0.75).

Data were acquired in three and two batches for HILIC and RPLCmodes, respectively. Missing values were imputed by drawing from

a random distribution of low values in the corresponding sample (Tyanova et al., 2016). Data from each mode were merged and me-

tabolites were formally identified by matching fragmentation spectra and retention time to analytical-grade standards when possible

or matching experimental MS/MS to fragmentation spectra in publicly available databases. We used the Metabolomics Standards

Initiative (MSI) level of confidence to grade metabolite annotation confidence (level 1 - level 4) (Table S1.3). Level 1 represents formal

identifications where the biological signal matches accuratemass, retention time and fragmentation spectra of an authentic standard

run on the same platform. For level 2 identification, the biological signal matches accurate mass and fragmentation spectra available

in METLIN database. Acylcarnitines, free fatty acids and complex lipids don’t necessarily all have MS/MS data in public databases

but were annotated based on expected signature fragments. Level 3 represents putative identifications that are the most likely name

based on previous knowledge of blood composition. Level 4 consists in unknownmetabolites. After careful annotation of the metab-

olite dataset, a total of 728 metabolites were measured and categorized in classes and pathways based on the KEGG database

where possible. Some metabolites elute in multiple peaks and are indicated with a number in parenthesis following the metabolite

name ordered by elution time. Metabolite abundances were reported as spectral counts. 664/728 metabolites (91.2%) could be de-

tected in the metabolomics dataset from the control experiment.

Semi-targeted Lipidomics from Plasma using the Lipidyzer Platform
Sample preparation

Plasma samples were thawed on ice, prepared and analyzed in a randomized order. Plasma lipids were extracted using a biphasic

separation protocol with ice-cold methanol, methyl tert-butyl ether (MTBE) and water (Contrepois et al., 2018). Briefly, 300 mL of

methanol spiked-in with internal standards (cat# 5040156, Sciex, Redwood City, CA, USA) was added to 40 mL of plasma and vor-

texed for 20 s. Lipids were solubilized by adding 1,000 mL of MTBE and incubated under agitation for 30 min at 4�C. After addition of

250 mL of ice-cold water, the samples were vortexed for 1 min and centrifuged at 14,000 g for 5 min at 20�C. The upper phase con-

taining the lipids was then collected, dried down under nitrogen, reconstituted with 200 mL of methanol and stored at�20�C. The day
of the experiment, lipids were dried down under nitrogen and reconstituted with 300 mL of 10 mM ammonium acetate in 9:1

methanol:toluene.

Data acquisition and processing

Lipid extracts were analyzed using the Lipidyzer platform that comprises a 5500 QTRAP System equipped with a SelexION differ-

ential mobility spectrometry (DMS) interface (Sciex, Redwood City, CA, USA) and a high flow LC-30AD solvent delivery unit (Shi-

mazdu, Kyoto, Japan). A full description of themethod is available elsewhere (Contrepois et al., 2018). Briefly, lipid molecular species

were identified and quantified using multiple reaction monitoring (MRM) and positive/negative ionization switching. Two acquisition

methods were employed covering 10 lipid classes; method 1 had SelexION voltages turned on while method 2 had SelexION volt-

ages turned off. Lipidyzer data were reported by the Lipidomics WorkflowManager (LWM) software which calculates concentrations

for each detected lipid as average intensity of the analyte MRM/average intensity of the most structurally similar internal standard (IS)

MRMmultiplied by its concentration. Lipid abundances were reported as concentrations in nmol/g. Lipids detected in less than 2/3 of
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the sampleswere discarded andmissing valueswere imputed by drawing froma randomdistribution of low values in the correspond-

ing sample (Tyanova et al., 2016). Data quality was ensured by i) tuning the DMS compensation voltages using a set of lipid standards

(cat# 5040141, Sciex, Redwood City, CA, USA) after each cleaning, more than 24 hours of idling or 3 days of consecutive use, ii)

performing a quick system suitability test (QSST) (cat# 50407, Sciex, Redwood City, CA, USA) before each batch to ensure accept-

able limit of detection for each lipid class, and iii) triplicate injection of lipids extracted from a reference plasma sample (cat# 4386703,

Sciex, RedwoodCity, CA, USA) at the beginning of the batch. The data were acquired in eight batches. Two datasets were generated,

one containing all individual lipid species (original) and a second one containing concatenated TAG information and LPC, LPE, FFA

classes were discarded (redundant with metabolomic dataset). In the latter, the median was calculated from individual TAG with the

same total number of carbons and unsaturations (TAG_med).

16S Microbiome Sequencing from Stool
Stool samples were collected within 4 months of the day of exercise (112.9 days on average) as part of the NIH integrated Human

Microbiome Project 2 study. DNA was first extracted from stool in line with the Human Microbiome Project’s (HMP) Core Sampling

Protocol A (hmpdacc.org) and then sequenced on aMiSeq system using 23 300 bp paired-end sequencing (Illumina, SanDiego, CA,

USA). Raw sequences were processed using Illumina’s software, assigned to Operational Taxonomic Units (OTU) by Usearch

against GreenGenes database (May 2013 version) and final taxonomic assignment was performed using RDP-classifier (Zhou

et al., 2019).

Clinical Laboratory Tests
Clinical laboratory tests were performed within 2 months of the day of exercise (54.2 days on average) as part of the NIH integrated

Human Microbiome Project 2 study (Zhou et al., 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

When not specified otherwise, the transcriptomic dataset used was transformed with variance-stabilization (VST), the lipid dataset

contained individual TAG species (original), and all missing values were imputed.

Fuzzy c-mean clustering
Fuzzy c-mean clustering was performed using the R package ‘Mfuzz’ (v2.20.0) after log2-transformation and Z-score scaling of the

data. We calculated the minimum centroid distance for a range of cluster numbers and the optimal number was chosen using the

‘elbow’ method.

t-distributed stochastic neighbor embedding (tSNE) dimensionality reduction
tSNE scatterplots were generated after log2-transformation and Z-score scaling of the data using the R package ‘Rtsne’ (v0.15) with

the following parameters: perplexity = 5, theta = 0.05.

Inter-individual variability
Coefficients of variation (CV) were calculated for each analyte on non-imputed datasets to avoid any potential bias. CV = standard

deviation/mean*100. The transcriptomic dataset used was normalized to sequencing depth (original). Inter-individual variability in

response to exercise was determined as the median CV for each analyte across all time points post-exercise relative to baseline.

Technical variability for each assaywas determined by calculating the CV across all quality control samples in the study. The boxplots

show the first (lower edge of the box), median (middle line) and third (upper edge of the box) quartiles. The upper whisker is the third

quartile + 1.5 x (interquartile range) and the lower whisker is the first quartile - 1.5 x (interquartile range).

Linear models to find analytes that change in response to exercise
Linear models adjusted for personal baseline, age, sex, body mass index, race/ethnicity, and batch information were computed in R

using the lm base function. Linear models were applied on log2-transformed data and the lipid dataset used was the concatenated

TAG version (TAG_med). One-way ANOVA testing (two-sided) was then used to calculate significance at each time point relative to

baseline. P values were corrected for multiple hypothesis using the Benjamini-Hochberg method and analytes with FDR below 0.05

were considered significant.

Pathway dynamic analysis
Differential expression analysis between each two consecutive time points was performed using the same models as described

above. Between each two consecutive time points, significant transcripts (FDR <0.05) were used to define the largest connected

component of the Protein-Protein Interaction network (PPI, STRING database (Szklarczyk et al., 2015)). In these networks, each

node represents a protein and an edge between two nodes represents an experimentally validated protein-protein interaction. Sub-

sequently, we identified the highest-scoring functional module from the PPI subgraph using BioNet R package (v1.46.0) (Beisser
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et al., 2010). BioNet identifies functional modules by accounting for network topology as well as the node’s significance P value. The

genes with the highest-scoring module were used for pathway enrichment analysis as described below.

Pathway/chemical class enrichment analysis
Weused the Ingenuity pathway analysis (IPA, QIAGEN) platform to search for enriched pathways using differentially expressed genes

in PBMCs and circulating proteins. All the detected transcripts or proteins were used as background. Significance of pathways was

determined by the hypergeometric test (one-sided) in IPA. For metabolites and complex lipids, enrichment was calculated using the

Kolmogorov–Smirnovmethod (one-sided, Figure 2) (Barupal and Fiehn, 2017) or using the Fisher exact t test (one-sided, Figure 5) in R

with pathway/chemical class annotation of all detected metabolites/lipids. P values were corrected for multiple hypothesis using the

Benjamini-Hochberg method and pathways with FDR below 0.05 (transcripts, proteins) and 0.20 (metabolites, complex lipids) were

considered significant. Pathway directions were calculated as follows: 1) median of fold change values relative to baseline for sig-

nificant molecules in the pathway (Figures 2 and 4), 2) median of beta coefficients for significant molecules in the pathway (Figure 5),

3) median of max (if up) or min (if down) fold change values relative to baseline for significant molecules in the pathway (Figure 6). Beta

coefficients were provided by regression models described below.

Linear regressions to find associations of key changes induced by exercise with demographics and physiological
measures
Linear regressions were conducted for selected molecules against demographics and physiological measures as detailed in Table

S2.4 using the lm base function in R. Lean body mass, fat mass and percent fat were calculated using the equations derived from the

National Health and Nutrition Examination Survey (NHANES) (Lee et al., 2017). Associations with a P value below 0.001 were consid-

ered significant. The lipid dataset used was TAG_med.

Correlation network analysis
Pairwise Spearman’s rank correlations were calculated using the R package ‘Hmisc’ (v4.1-1) and weighted, undirected networks

were plotted with ‘igraph’ (v1.2.1). Correlations with Bonferroni adjusted P values below 0.05 (Figure 3) and 0.01 (Figure 5) were

included and displayed via the Fruchterman-Reingold method. Only the main networks were plotted. Nodes were color-coded by

assay and their size represent the maximum (clusters 1 and 2) or minimum (clusters 3 and 4) median fold change in response to ex-

ercise (Figure 3) and the betweenness centrality (Figure 5) as calculated by the betweenness function in ‘igraph’.

Differential allele-specific expression (ASE) with exercise
Readmapping bias was removed by following theWASP pipeline. The GATK tool ASEReadCounter was used to count allele specific

reads at exonic heterozygous sites. For each individual, only SNPs supported by at least 20 reads in each time point and bi-allelic

(0.1 % allelic ratio % 0.9) in at least one time-point were considered. Only SNP shared by at least 10 heterozygous individuals

were considered. We tested for differences in ASE with time using the beta-binomial generalized linear mixed models implemented

in EAGLE (v2.0) (Knowles et al., 2017). In short, for each exonic SNP, wemodel the alternative allele count for heterozygous individual

i, at time t using a Beta-Binomial distribution, i.e., yit �BB(nit, s(4i bt + ui), c), where nit is the total number of reads for i in t, s() is the

logistic function, 4i represents the phase between the causal cis-SNP and the exonic SNP and is treated as a latent variable taking

values in {�1,+1}. We learn a prior p = P(4i = +1) across all individuals and marginalize (sum) over the possible values of p. bt is the

effect of time on the reference allele proportion. ui�N(0,v) is a per individual, per exonic SNP random effect. We use variational Bayes

EM to approximately integrate over all ui while optimizing with respect to the other parameters. Last, c is the concentration parameter

which we learn per exonic SNP using maximum a posteriori probability estimation with a Gamma (1.0001, 10E�4) prior. We use a

likelihood ratio test to test the global hypothesis of no differences in ASE between baseline and any time point. We corrected for mul-

tiple testing across SNPs using the BH procedure (FDR <0.05).

Linear regressions to find analytes associated with peak VO2

Peak VO2 was scaled to body weight. Three linear regressions were conducted at each time point using the lm base function in R and

were adjusted for age, sex, ethnicity/race, batch information as well as body mass index or fat mass or percent fat. An additional

linear regression adjusted for age, sex, ethnicity/race, and batch information was performed on peak VO2 scaled by lean body

mass. Fat mass, percent fat and lean body mass were calculated using the equations from NHANES (Lee et al., 2017). P values

were corrected using BH method and analytes with FDR below 0.05 were considered significant. The lipid dataset used was

TAG_med.

CPX parameter prediction models
Prediction models were trained using baseline multi-omic measurements (pre-exercise). Clinical laboratory results and gut micro-

biome data were from the iHMP dataset at the closest healthy visit to the exercise day. No clinical and gut microbiome data were

available for participant ZJBOZ2X, hence this participant was excluded from the analysis. Prediction modeling was performed by

first selecting predictive analytes using a Bayesian network algorithm and then building the model using ridge regression.
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Feature selection
All data (demographics, clinical, complex lipids, metabolites, targeted and untargeted proteins, transcripts) except gut microbiome

percent data were log2-transformed. All features were standardized to zero mean with unit variance. Output CPX parameters were

not transformed or scaled. Identification of predictive features was performed using the Max-Min Parents and Child algorithm

(MMPC) in the R package ‘MXM’ (v1.4.1). Feature selection was performed using leave-one-out cross-validation, where 34 training

sets were constructed and each training set excludes the data from a different participant. The MMPC algorithm was run on each

training set and predictive features were selected if they were used in R 20% of the models generated from the training sets.

Ridge regression modeling
We performed leave-one-out cross-validation to maximize available training data. For each training set, we optimize the hyperpara-

meter by performing a grid search and selecting the model that minimizes test error. The predicted output value is the value from the

cross-validation iteration in which that output data point and its associated features are excluded from the training set. We use these

predicted values to calculate mean square error (MSE) and R2. The value of the hyperparameter used was the average of the hyper-

parameters which minimized test error during cross-validation.

Linear mixed models to find analytes responding differently to exercise in insulin resistant participants
Linearmixedmodels were conducted at each time point using the ‘lme4’ package (v1.1-21) in R andwere adjusted for personal base-

line, age, sex, BMI, race/ethnicity and batch information. ‘lmerTest’ package in R (v3.1-0) was used to compute P values at each time

point post-exercise. P values were corrected using BH method. The lipid dataset used was TAG_med.

Multi-omic outlier analysis
Outlier analysis was performed on non-imputed datasets to avoid any potential bias. Multi-omic data were log2-transformed and all

features were standardized to zero mean with unit variance. Absolute levels and delta values relative to baseline were used for the

‘baseline’ and ‘in response to exercise’ analyses, respectively. P values were calculated assuming a normal distribution and were

corrected for multiple hypothesis using the Benjamini-Hochberg procedure. Analytes with FDR below 0.05 at baseline were consid-

ered outliers. For outliers in response to exercise, two significant outliers across the four time points (2, 15, 30 min and 1-hour time

points) were required.
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Supplemental Figures
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Figure S1. Quality Controls for Data Generation and Exercise Protocol, Molecular Changes in Response to Exercise, and Molecular

Individuality, Related to Figure 1

(A) Principal component analysis across omic assays. The study samples were intermixed suggesting limited batch effect and the quality control samples (QCs)

clustered together indicating good technical reproducibility. Each dot represents a sample colored by batch information. Black and gray dots are QCs. For

metabolomics and untargeted proteomics, QCs consist in an equimolar mix of all the samples in the study. For lipidomics, QCs are lipid extracts from a reference

plasma sample. QC1-4 in targeted proteomic experiments represent individual samples in the study analyzed in each plate. Transcriptomic experiment didn’t

contain QC. (B) 2D visualization of all multi-omic analytes using t-distributed stochastic neighbor embedding (tSNE) algorithm. Each dot represents a single

sample. (C) Bar graph representing the proportion of analytes across molecule types significantly changing in response to exercise (FDR <0.05). (D) Principal

component analysis across omic assays. Each dot represents a sample colored by participants.
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Figure S2. Inter-individual Variability, Related to Figure 1 and Table S3

(A) Technical variability for complex lipids, metabolites and proteins using quality control samples as described in Figure S1A. We calculated that 95.2% of

metabolites, 91.7% of complex lipids and 65.8% of proteins had a coefficient of variation (CV) below 20% across QCs. (B) Inter-individual variability at all time

points using absolute levels across molecule types. Inter-individual variability by lipid class (C) and metabolic class (D). (E) Inter-individual variability at all time

points using analyte levels relative to baseline.
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Figure S3. Natural Molecular Variation in Absence of Exercise and Inter-day Molecular Variation, Related to Figure 1

(A) Proportion of analytes changing in absence of exercise among the analytes that are changing with exercise. Linearmodels adjusted for personal baseline, age,

sex, body mass index and race/ethnicity were employed using a subset of 14 individuals that participated in both the exercise and the control studies. We found

30/108 proteins, 224/664 metabolites and 561/710 complex lipids changing significantly in response to exercise (FDR <0.10) among which 3 proteins, 12

metabolites and 0 complex lipid also changed significantly without exercise over the 1-hour time frame. Longitudinal trajectories of targeted proteins (B) and

metabolites (C) that changed without exercise (FDR <0.10). The dots represent the mean log2 fold change relative to baseline and the bars the standard error of

the mean (SEM). Of note, 1 targeted protein (vWF) was not measured in the control set because it was no longer commercialized as part of the CVD kit. 664/728

metabolites (91.2%) could be detected in the control set. (D) Proportion of analytes changing the nextmorning among the analytes that are changingwith exercise

in a subset of the cohort (n = 15). Linear models adjusted for personal baseline, age, sex, body mass index and race/ethnicity were employed. We found 3,637/

15,855 transcripts, 8/109 proteins, 159/728 metabolites and 157/710 complex lipids changing significantly in response to exercise (FDR <0.05) among which 15

metabolites and 95 complex lipids (94/95 were TAG) were different the next morning. (E) Inter-day variability relative to the variability induced by exercise. For

each analyte that was different the next morning (n = 110), we calculated the ratio of the maximum/minimum fold change with exercise over the fold change the

next morning. The distribution of ratios shows that the variability induced by exercise is much larger than the inter-day variability (>2-fold difference). TAG were

included in this analysis.
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Figure S4. Cluster Compositions and Longitudinal Trajectories of SelectedMetabolic Pathways/Classes in Response to Exercise, Related to

Figures 2 and 3 and Table S2

(A) Cluster compositions in metabolite and complex lipid classes as well as protein functions. Longitudinal trajectories of significant metabolites: (B) branched-

chain ketoacids, (C) caffeine metabolism, (D) bile acids, (E) urea cycle, (F) cofactors and vitamins, (G) choline metabolism, (H) lysine metabolism, (I) histidine

metabolism, (J) tryptophan metabolism and (K) gamma-glutamyl dipeptides. The dots represent the mean log2 fold change relative to baseline and the bars the

standard error of the mean (SEM).
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Figure S5. Pathway Dynamics between Each Two Consecutive Time Points And Population-Level Differential Allele-Specific Expression

(ASE) by Time, Related to Figures 2 and 4 and Table S2

Pathway/chemical class enrichment analysis of circulating plasma metabolites (A) and pathway analysis using significant PBMC transcripts (B). Pathway di-

rection is themedian log2 fold change relative to the previous time point of significantmolecules in each pathway (blue: downregulated, red: upregulated). The dot

size represents pathway significance. (C) QQplot of likelihood-ratio test (LRT)P values for differential ASEwith time analysis. (D) Distribution of allelic ratios across

time for all SNPs with significant differential ASE by time effects.
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Figure S6. Peak VO2 in the Cohort Relative to a Reference Population (FRIEND Registry) andMolecular Associations with Peak VO2, Related

to Figure 5 and Table S4

(A) Peak VO2 values categorized by age and sex. Blue and green dots represent the mean values from the FRIEND registry and error bars represent one standard

deviation. (B) Distribution of peak VO2 normalized to reference values from the FRIEND registry. (C) Proportion of analytes associated with peak VO2 (scaled by

BW) as determined by linear regression analyses adjusted for BMI, fat mass or percent fat (FDR <0.05). (D) Proportion of analytes associatedwith peak VO2 scaled

by BW and LBM as determined by linear regression analyses (FDR <0.05).

ll
Article



A

C D

E

B

Figure S7. Differential Response to Acute Exercise in Insulin-Resistant Participants, Related to Figure 6 and Table S5

Patterns of differential metabolites (FDR <0.10) (A) and complex lipids (FDR <0.20) (B) in IR participants. Linear mixedmodels adjusted for personal baseline, age,

sex, body mass index and race/ethnicity were employed. The solid line represents the mean and the dashed line represents the 95% confidence interval. (C)

Heatmap of significant proteins as determined by the linear mixed model (FDR <0.20) representing the median log2 fold change relative to baseline in the cohort.

Proteins were grouped in patterns. Differential response to exercise for (D) TNF-a and IL-6 aswell as key energymetabolites (E). The lines represent themean log2

fold change relative to baseline.
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Figure S8. Multi-omic Outlier Analysis, Related to Table S6

(A) Number of outliers across omes per participant at baseline and in response to exercise (FDR <0.05). Participants with significantly different number of

outliers in comparison to the population (FDR <0.05) are represented with a solid bar. (B) Heatmap of clinical laboratory results as well as key rest and stress

parameters representing the BH-corrected P values for each measure in each participant. Outlier measures (FDR <0.05) are outlined in red. Participant

ZLTUJTN was mildly anemic with borderline high RBC (5.92 M/ml, normal range: 4.40-5.90), borderline low hemoglobin (13.4 g/dl, normal range: 13.5-17.7),

high RDW (20.5%, normal range: 11.5%–14.5%) and low MCV (72.8fl/red cell, normal range: 82.0-98.0), MCH (22.6 pg/cell, normal range: 27.0 to 34.0) and

MCHC (31.0 g/dl, normal range: 32.0 - 36.0). Participant ZVM4N7A had a borderline high mean platelet count over 7 laboratory visits ± 5 months relative to the

exercise date (405 K/ml, normal range: 150-400). (C) Functional association network of outlier proteins (FDR <0.05) in response to exercise in individual

ZL63I8R. This analysis was performed using the web tool STRING. Edges correspond to known, predicted or other interactions. Proteins in blue are

downregulated and proteins in red are upregulated.
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