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SUMMARY
Small open reading frames (smORFs) and their encoded microproteins play central roles in microbes. How-
ever, there is a vast unexplored space of smORFs within human-associatedmicrobes. A recent bioinformatic
analysis used evolutionary conservation signals to enhance prediction of small protein families. To facilitate
the annotation of specific smORFs, we introduce SmORFinder. This tool combines profile hidden Markov
models of each smORF family and deep learning models that better generalize to smORF families not
seen in the training set, resulting in predictions enriched for Ribo-seq translation signals. Feature importance
analysis reveals that the deep learning models learn to identify Shine-Dalgarno sequences, deprioritize the
wobble position in each codon, and group codon synonyms found in the codon table. A core-genome anal-
ysis of 26 bacterial species identifies several core smORFs of unknown function. We pre-compute smORF
annotations for thousands of RefSeq isolate genomes and Human Microbiome Project metagenomes and
provide these data through a public web portal.
INTRODUCTION

Small open reading frames (smORFs, alternatively sORFs; %50

amino acids in length) and the microproteins (also referred to as

small proteins) they encode play important roles in microbes,

including housekeeping, phage defense, and cell-signaling func-

tions. Microproteins have been identified across multiple do-

mains of life and, given their potential role in mediating cell-cell

communication, have been a topic of growing interest in various

fields of biology and translational medicine (Hanada et al., 2013;

Storz et al., 2014; Makarewich et al., 2018; Leslie, 2019). Despite

their importance, smORFs that encode these proteins are diffi-

cult to identify and as a result they are often overlooked (Su

et al., 2013; Storz et al., 2014; Duval and Cossart, 2017). Tech-

niques such as ribosome profiling (Ribo-seq) and proteomic ap-

proaches have had some success and provide evidence of tran-

scription and translation of candidate smORFs (Aspden et al.,

2014; Miravet-Verde et al., 2019; Weaver et al., 2019; Lohmann

et al., 2020). However, these approaches can only detect what is

being actively translated; additionally, they are limited by an

experimental bottleneck, usually requiring the isolation and cul-

ture of an organism of interest.

Microbial smORFs can be difficult to accurately detect using

computational annotation of sequenced genomes due to their

small sizes (Hyatt et al., 2010). In the past, many microproteins

were discovered by serendipity, either in overlapping noncoding

RNAs or in the intergenic spaces between large ORFs (Jørgen-

sen et al., 2013; Pinel-Marie et al., 2014). Others have used ma-
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chine-learning techniques to identify smORFs in a limited num-

ber of bacterial species (Friedman et al., 2017). A more

systematic way to identify and annotate smORFs within microbi-

al genomes would be of great value.

Recently, a bioinformatic analysis used evolutionary conser-

vation signals to enhance smORF prediction and identified thou-

sands of microprotein families in human-associated metage-

nomes on a large scale (Sberro et al., 2019). Unfortunately,

many of these smORFs remain unannotated in microbial refer-

ence genomes and standard genome annotation tools do not

accurately predict them. While the microprotein families identi-

fied by Sberro et al. provide a larger set of candidate proteins,

nomethod exists to automatically annotate these smORFs in ex-

isting genomic sequences from bacterial isolates and metage-

nomes. Some recent studies have shown that logistic regression

and support vector machines (SVMs) hold promise as methods

to identify microproteins (Zhu and Gribskov, 2019; Li and

Chao, 2020). In a study conducted by Li and Chao, 2020, the

source code is not yet available, and it has not yet been pub-

lished in a peer-reviewed journal, making it difficult to evaluate

and understand the underlying approach. In a study conducted

by Zhu and Gribskov, 2019, the model’s precision on bacterial

microproteins from outside of their training set was not as-

sessed. The ability to annotate these microproteins in microbial

genomes is an important step toward understanding their

diverse functions. To that end, a computational tool that can

streamline their annotation and that can be applied to any

sequenced genome or metagenome would be an important
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step toward understanding the biological functions of these

microproteins.

Using the >4,500 smORF families identified by Sberro et al.

(2019), we sought to build an annotation tool that combines pro-

file hidden Markov models (pHMMs) and deep learning models

to annotate smORFs in genome and metagenome assemblies.

Deep learning has rapidly increased in popularity in the field of

genomics and has previously been applied to the task of general

ORF prediction (Al-Ajlan and Allali, 2019). Deep learning models

obviate the need for ‘‘feature engineering,’’ the practice of sum-

marizing raw features intometrics and statistics that are believed

to be more predictive, with the ability to automatically learn

important higher-order features by analyzing raw sequence

data (Zou et al., 2019). However, deep learning often requires a

careful model architecture and hyperparameter selection pro-

cess to achieve optimal performance (Li et al., 2017), which

can be computationally expensive (See Table S1, ‘‘Glossary

of Terms’’).

Here, we developed SmORFinder, a tool that combines profile

HMMs and deep learning classifiers to identify smORFs inmicro-

bial genomes. First, we trained deep learning models that

analyze the predictions of the Prodigal ORF annotation tool (Hy-

att et al., 2010) to determine if the predictions are true smORFs,

using the Sberro et al. (2019) data as a training set. We demon-

strate that the deep neural networks have higher performance

(F1 score) than profile HMMs when it comes to the classification

of smORF families that did not exist in the training set. We then

applied these predictive models to Ribo-seq and MetaRibo-

seq (Fremin et al., 2020) datasets, demonstrating that its predic-

tions are enriched for actively translated genes and that

combining predictions from different models improves perfor-

mance. Next, we evidenced that our deep learning models

have learned to identify Shine-Dalgarno sequences, to depriori-

tize the wobble position in each codon, and to group codons in a

way that strongly corresponds with the codon table. Finally, we

re-annotated all bacterial genomes in the RefSeq database,

and made the standalone tool and annotations freely available

to the research community.

RESULTS

Deep Learning Models Detect Unobserved smORF
Families with Greater Recall and F1 Scores than Profile
HMM Models
Profile hiddenMarkov models (pHMMs) are widely used in bioin-

formatics to annotate proteins that are believed to belong to a

certain family or to contain specific domains (Eddy, 1998). Anno-

tation tools such as Prokka (Seemann, 2014) use pHMMs built to

recognize specific protein domains, which can then be used to

annotate predicted microbial ORFs. We sought to compare

deep learning models to pHMMs for predicting smORFs. To

maximize the potential for comprehensive annotation of

smORFs, including those that are highly divergent from those

included in the training set, we optimized for deep learning

models that performed well on smORF families (smORF clusters

identified by Sberro et al., 2019) that were intentionally excluded

from the training set (unobserved smORFs; Figure S1A).

We used a deep learning model architecture that took three

different nucleotide sequences as inputs—the smORF itself,
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100 bp immediately upstream of the smORF, and 100 bp imme-

diately downstream of the smORF. Using our training set of

predicted true-positive smORFs (positives) and predicted true-

negative smORFs (negatives), we developed two deep learning

models using the hyperband algorithm to tune hyperparameters.

We refer to these deep learning model architectures generally as

DeepSmORFNets (DSN). The first model (DSN1) was tuned to

have the lowest validation loss on a validation set of observed

smORF families (‘‘Validation - Observed’’), and the second

model (DSN2) was tuned to have the highest F1 score on a vali-

dation set of unobserved smORF families (‘‘Validation - Unob-

served’’) (Figures S1B and S1C). The models differ in interesting

ways: of note, DSN2 uses bidirectional Long short-termmemory

(LSTM) layers, while DSN1 does not, and DSN1 hasmore convo-

lutional layers and fewer total parameters (Figure S2E).

We then compared the performance of these models against

pHMMs. We randomly split the training and validation sets 64

times, where each random split resulted in a unique training

set, a validation set of observed smORF families (‘‘Validation -

Observed’’), and a validation set of unobserved smORF families

(‘‘Validation – Unobserved’’). We trained the DSN models on

each of these randomly split training sets, and we chose the

model with the lowest loss in the ‘‘Validation - Observed’’ set.

Likewise, we trained pHMMs on the 64 randomized training

sets and compared their performance to the deep learning

models on the validation sets (Figure 1).

We found that DSN1, DSN2, and the pHMMs all performed

well on the ‘‘Validation - Observed’’ set (Figure 1A), with recall,

precision, and F1 scores that exceeded 0.975 for both DSN1

andDSN2at P(smORF) > 0.5, and 0.99 for pHMMsat an E value <

13 10�6 (see Figure S2A for precision and recall metrics; Tables

S1 and S2). Performance on the ‘‘Validation - Unobserved’’ set

shows an interesting difference between deep learning models

and pHMMs. At a cutoff of P(smORF) > 0.5, DSN2 had better

average recall than pHMMs at a cutoff of an E value < 1 (paired

t test; p < 1 3 10�16), better precision (paired t test; p < 1 3

10�16), and a better F1 score (paired t test; p < 1 3 10�16). At

the same cutoff, DSN1 had slightly worse recall than pHMMs

at a lenient cutoff of an E value < 1 (paired t test; p = 0.00684)

but a slightly better F1 score (paired t test; p = 1.9 3 10�10).

These results suggest that the deep learning models are better

at generalizing to the unobserved smORF families overall, while

the precision of pHMMs continues to be superior at a signifi-

cance cutoff of an E value < 1 3 10�6. This suggests that the

models may complement each other when used together to

identify smORFs.

We then compared the DSN1 and DSN2 models to simpler

neural networks without hyperparameter optimization (Fig-

ure S2B). A simple neural network with only one convolutional

layer and all three input sequences performed well on the ‘‘Vali-

dation - Unobserved’’ set (F1 score = 0.756 ± 0.029), although

not as well as DSN2 (F1 score = 0.776 ± 0.021; paired t test;

p = 4.4 3 10�14). A simple neural network analyzing only the

smORF nucleotide sequence performed relatively poorly on

the ‘‘Validation - Unobserved’’ set (F1 score = 0.676 ± 0.02).

We also compared the final DSN models to simple k-nearest

neighbor algorithms trained on nucleotide and protein k-mer

composition, and we show substantial improvements by DSN

models on both the ‘‘Validation - Observed’’ and ‘‘Validation -



Figure 1. Deep Learning Models Detect Unobserved smORF Families with Greater Recall and F1 Score than Profile HMM Models
(A) Each point is the average value after running the training procedure 64 timeswith randomly selected families excluded from the training set and assigned to the

‘‘Validation - Unobserved Families’’ set. Showing the F1 score (the weighted average of precision and recall) for the three sets with different significance cutoffs.

Data are represented as mean ± SEM.

(B) The F1 score, recall, and precision of the final DSN1, DSN2, and pHMMmodels. A positive prediction cutoff of P(ORF) > 0.5was used for DSN, and a cutoff of E

value < 1 3 10�6 was used for pHMM.

(C) The average F1 score of various ensemble model combinations across sets. ‘‘Intersection (Lenient)’’ indicates that all positive predictions met the lenient

significance cutoffs (pHMM E value < 1, DSN1 P(smORF) > 0.5, and DSN2 P(smORF) > 0.5), ‘‘Intersection (Strict)’’ indicates that all positive predictions met the

strict significance cutoffs (pHMM E value < 13 10�6, DSN1 P(smORF) > 0.9999, and DSN2 P(smORF) > 0.9999), ‘‘Union (Lenient)’’ indicates that at least one of

the three models met the lenient significance cutoffs, and ‘‘Union (Strict)’’ indicates that at least one of the three models met the strict significance cutoffs. Data

are represented as mean ± SEM. See also Figures S1 and S2; Table S2.
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Unobserved’’ sets (Figure S2C). Finally, we analyzed how the

false-positive rate varied across curated negatives (naturally

occurring smORF sequences with no evidence of codon conser-

vation) and shuffled negatives (smORF sequences randomized

using tetramer shuffling) (Figure S2D). We found that both the

DSN1 and DSN2 models performed well at correctly identifying

curated negatives for both the training set and the ‘‘Validation -

Observed’’ set. It was more difficult for DSN1, DSN2, and

pHMM models to correctly identify curated negatives that were

in the ‘‘Validation - Unobserved’’ dataset, with the false-positive

rate reaching as high as 0.189 ± 0.034 when using a lenient sig-

nificance cutoff of P(smORF) > 0.5. In general, the DSN models

and the pHMMs performed relatively well on the shuffled nega-

tives with all models reaching an average false-positive rate of

less than 0.06 at the most lenient significance cutoffs.

Despite the increased precision of pHMMs, there are several

advantages to the deep learning models. Both deep learning

models have fewer learnable parameters than the pHMMs (Fig-

ure S2E), with the pHMMs having 43 more parameters than

DSN1. As implemented in the Python Keras package and the

command-line tool, hmmsearch, DSN1 runs about as fast as
the pHMMs, while DSN2 is slower (Figure S2F) (Eddy, 1998;

Chollet et al., 2015). Notably, the deep learning models require

no sequence clustering or alignment, just the raw smORF and

flanking nucleotide sequences. To construct pHMMs for each

smORF family, they must be clustered and aligned, with a

different pHMM being built for each family. This alignment-free

approach to building the model can be considered as an advan-

tage of the deep learning models. However, the pHMMs are

generativemodels and require no negative examples for training,

while the deep learning models do require these negative

examples.

After hyperparameter tuning of the final DSNmodels and eval-

uating their performance on the 64 randomized validation sets,

we trained the models one final time on the final training set,

which included at least one representative of each smORF fam-

ily. We then evaluated all three models (pHMMs, DSN1, and

DSN2) on a test set that was held out entirely from the hyperpara-

meter tuning process. We found that all three models performed

well on the validation and test sets, with the pHMMs performing

the best overall, but all threemodels had recall, precision, and F1

scores that exceeded 0.98 on the test set (Figure 1B).
Cell Host & Microbe 29, 121–131, January 13, 2021 123
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We found that while there was considerable overlap in the

positive predictions made by DSN1, DSN2, and the pHMM

models across datasets (Figure S3), some of their predictions

were complementary. Thus, we built an ensemble model that

could combine predictions of each model to optimize overall

performance. We tested ensemble model combinations at

lenient—pHMM E value < 1, DSN1 P(smORF) > 0.5, and

DSN2 P(smORF) > 0.5—and strict—pHMM E value < 1e�6,

DSN1 P(smORF) > 0.9999, and DSN2 P(smORF) > 0.9999—

significance cutoffs (Figure 1C). We found that by combining

the union of all predictions that meet a strict significance cutoff

for one model (‘‘Union [Strict]’’) with the intersection of all

lenient predictions (‘‘Intersection [Lenient]’’) we could maintain

both a high F1 score in the training and ‘‘Validation - Observed’’

sets (0.998 and 0.994, respectively) and a relatively high F1

score in the ‘‘Validation - Observed’’ set (0.757). This final

ensemble model functions as a balance between the high per-

formance of the pHMMs in the training and ‘‘Validation -

Observed’’ sets with the high performance of the DSN models

in the ‘‘Validation - Unobserved’’ set.

Predicted smORFs Are Enriched for Ribo-Seq Signal
Next, we decided to gauge the quality of the smORF predictions

using Ribo-seq signal as a proxy. Ribo-seq, a method for ribo-

some profiling, can identify mRNA sequences that are directly

bound by a ribosome, indicating active translation (Ingolia

et al., 2009). We reasoned that a more accurate set of smORF

predictions would more likely be translated, and thus, more likely

to be enriched for a Ribo-seq signal. We used Ribo-seq libraries

for one Bacteroides thetaiotaomicron isolate (previously pub-

lished, Sberro et al., 2019) and four metagenomic human micro-

biome samples that had been previously generated and

sequenced using MetaRibo-seq, a technique for metagenomic

ribosome profiling (Fremin et al., 2020).

We packaged all three models (pHMMs, DSN1, and DSN2)

together into a single command-line tool that we refer to as

SmORFinder. We kept all predicted smORFs that met a pHMM

cutoff of E value < 1.0, a DSN1 cutoff of P(smORF) > 0.5, or a

DSN2 cutoff of P(smORF) > 0.5. We found that 15 smORF fam-

ilies were false positives and they were automatically excluded

from consideration by SmORFinder. These false-positive fam-

ilies corresponded to the N terminus of the peptide chain release

factor, RF2 (prfB), inmany different species. This gene contains a

naturally occurring programmed frameshift that is corrected

upon translation (Curran, 1993), and the Prodigal tool fails to ac-

count for this, leading to a spurious smORF annotation.

In B. thetaiotaomicron, we found that 86.1% of non-smORFs

(ORFs coding for proteins greater than 50 aa in length) have a

Ribo-seq signal (reads per kilobase million [RPKM] R 0.5; Fig-

ure 2A) compared with 23.6% of smORFs. We found that genes

predicted to be true smORFs by at least one model are more

likely to be enriched for Ribo-seq signal than ‘‘Rejected smORF’’

predictions (smORFs that did not meet minimum significance

cutoffs for any of the three models). The set of predicted

smORFs that met strict significance cutoffs for DSN1, DSN2,

and pHMMs was found to be enriched for Ribo-seq signal over

the ‘‘Rejected smORFs’’ (Fisher’s exact test; p = 0.0250). This

set was identical to the set identified by DSN1 alone with a

high significance cutoff of P(smORF) > 0.9999. The small number
124 Cell Host & Microbe 29, 121–131, January 13, 2021
of predicted smORFs in this bacterium reduces the power to

detect Ribo-seq enrichment.

We repeated this analysis using publishedMetaRibo-seq data

generated from stool samples of four human subjects (Figure 2B)

(Fremin et al., 2020). In general, we found that predicted smORFs

were much more enriched for MetaRibo-seq signal than ‘‘Re-

jected smORFs.’’ In these samples, the MetaRibo-seq enrich-

ment of predicted smORFs even exceeded the non-smORF

enrichment for high-confidence sets that met high significance

thresholds for one or more of the models. As we require higher

significance thresholds for the three models (pHMM, DSN1,

DSN2) and concordance across multiple models, the Meta-

Ribo-seq enrichment increased across the four samples. This

suggests that there is value in combining the predictions of the

three sets to generate a confident set of smORF predictions.

Feature Importance Analysis Reveals Inner Workings of
Deep Learning Models
Deep learningmodels have been criticized in the past due to their

lack of interpretability, often described as a ‘‘black box.’’ Recent

advances in deep learning interpretation have overcome this

challenge, enabling us to gain insight into the features of the

input that play a role in the final model prediction, a technique

called ‘‘feature importance analysis’’ (Shrikumar et al., 2017).

We applied feature importance analysis to our deep learning

models using the Deep Learning Important FeaTures (DeepLIFT)

method as implemented in the SHapley Additive exPlanations

(SHAP) Python package (Lundberg and Lee, 2017). Briefly, this

method calculates the importance of individual input features

relative to a set of randomized references by backpropagating

the contributions of all neurons to every feature of the input. In

the case of our smORF nucleotide sequences, this results in

importance scores (also called contribution scores) assigned

to each nucleotide in the sequence. For example, if a deep

learning model was built to identify ChIP-seq binding sites for

a given transcription factor, such as CTCF, feature importance

analysis using the DeepLIFT method would identify the CTCF

binding motif in individual examples, producing experimentally

actionable information.

We applied this technique to both DSN1 and DSN2 to see if we

can gain insight into how the models identify true smORFs. First,

we analyzed the average DeepLIFT importance scores of all up-

stream and downstream smORF-flanking nucleotide sequences

found in the training set (Figure 3A). In the upstream sequence,

we saw a distinct peak at �12 bp in the importance scores of

both DSN1 and DSN2. This is in the range of where we typically

find the Shine-Dalgarno sequence (a well-described and

conserved ribosomal binding site), and upon inspection of indi-

vidual examples we saw that both models did in fact identify

the AGGAGG Shine-Dalgarno motif as an informative discrimi-

nating feature (Figures S4A and S4B). In the downstream

sequence, it would appear that DSN1 places greater importance

on the more proximal nucleotide sequences, while DSN2 seems

to have identified two particularly important positions at +13

and +4 positions downstream from the stop codon of the

smORF. At positions +1 through +10, the nucleotides with the

highest average importance scores for DSN2 are all adenine,

with the exception of position +3, which is a thymidine. At

positions +10 through +20, the nucleotides with the highest
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Figure 2. Predicted smORFs Are Enriched for Ribo-Seq Signal

(A) The proportion of genes with Ribo-seq signal (RPKMR 0.5) in different gene sets in aBacteroides thetaiotaomicron isolate. Table along the x-axis denotes the

genes included in each set. The label ‘‘smORF" indicates whether the set includes smORFs (+) or only non-smORFs (�), ‘‘pHMM’’ indicates that the set includes

pHMM-predicted smORFs at E value < 1.0 (+), ‘‘DSN1’’ indicates that the set includes DSN1-predicted smORFs at P(ORF) > 0.5 (+), ‘‘DSN2’’ indicates that the set

includes DSN2-predicted smORFs at P(ORF) > 0.5 (+), ‘‘pHMM-HC’’ indicates the set includes pHMM-predicted smORFs at E value < 13 10�6 (+), ‘‘DSN1-HC’’

indicates that the set includes DSN1-predicted smORFs at P(ORF) > 0.9999, and ‘‘DSN2-HC’’ indicates the set includes DSN2-predicted smORFs at P(ORF) >

0.9999. If multiple ‘‘+’’ symbols are found in a column, it means that all genes in the set meet each cutoff. The symbol ‘‘�’’ indicates that all genes meeting the

specified cutoff were excluded from the set. The final column indicates all smORFs that were not predicted by any model to be a true smORF at any significance

cutoff. These smORFs are referred to as ‘‘Rejected smORFs.’’ Error bars indicate the standard error of each proportion. The number of total genes in each gene

set is given at the bottom of each bar. Asterisks indicate that the proportion is significantly higher (p < 0.05) in the specified set than in the ‘‘Rejected smORFs’’ set.

(B) The proportion of genes with MetaRibo-seq signal (RPKMR 0.5), normalized to rejected smORF MetaRibo-seq signal, in different gene sets in four different

MetaRibo-seq samples. Normalization was performed by subtracting the proportion of rejected smORFswith aMetaRibo-seq signal from the proportion of genes

in each set with MetaRibo-seq signal. The x- axis table is the same as the one shown in (A) with additional gene sets added. For example, one additional column is

the 8th column from the left, designated by ‘‘smORF = +,’’ ‘‘pHMM = +,’’ ‘‘DSN1 =�,’’ and ‘‘DSN2 =�’’ indicates the set of smORFs with predicted by the pHMM

model to be a true smORF, but predicted by both DSN1 andDSN2 to be a false smORF. Asterisks indicate that the proportion is significantly higher (p < 0.05) in the

specified set than in the ‘‘Rejected smORFs’’ set. Error bars indicate the standard error of each proportion. See also Figure S3.
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Figure 3. Feature Importance Analysis Reveals Inner Workings of Deep Learning Models

(A) Average feature importance scores across the 100 bp upstream and downstream of each true smORF example in the training set; showing the feature

importance scores for DSN1 (red) and DSN2 (blue).

(B) The average feature importance scores across the first 21 and last 21 bp of all true smORF examples in the training set.

(C) The average feature importance scores of the first, second, and third codon position in codons of each true smORF example in the training set. Both models

assign higher feature importance to the first two codon positions than the third (wobble) position.

(D) The average feature importance scores of each codon in the codon table, excluding stop codons. The nucleotide of the first codon position is on the x axis,

while the second and third positions are shown on the y axis.

(E) The true codon synonym similarity (CSS) score (dotted lines) versus the distribution of CSS scores (solid line) observed when randomly permuting codon

synonym labels across all scores. See also Figure S4.
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average importance scores for DSN2 are all adenine. This sug-

gests that DSN2 has determined that an A-rich downstream

sequence may be predictive of a true smORF. By contrast,

DSN1 places greater importance on cytosines in the down-

stream sequence, although it assigns much less importance to

the downstream sequence, overall. The prioritization of A-rich

downstream regionsmay indicate the rho-independent (intrinsic)

transcription termination mechanism, which includes a chain of

uracils in the mRNA transcript (d’Aubenton Carafa et al., 1990;

Peters et al., 2011).

To further illuminate the role of the upstream and downstream

regions in the DSN1 and DSN2 models, we performed a feature

ablation experiment (Chuang and Keiser, 2018), where we only

trained the model architectures using the upstream sequence

input branch, the downstream sequence input branch, and the

ORF sequence input branch, independently (Figure S4C). We

found that the upstream and downstream regions of the DSN2

model performed quite well independent of the ORF sequence

and substantially better than the DSN1 model, corresponding
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to the higher number of parameters allotted to these flanking re-

gions in the DSN2model. We found that the high F1 scores of the

DSN1 and DSN2 models in the ‘‘Validation - Unobserved’’ set

were only achieved when all three sequence regions were com-

bined in the full model that included the upstream, downstream,

and smORF sequences.

Next, we analyzed the average importance scores across the

first 21 and the last 21 base pairs within each smORF (Figure 3B).

There appears to be some difference across both scores for the

two models, but what is most striking is the obvious periodicity

in the signal. This is not surprising considering the periodic nature

of codons found in functionalORFs.Whenweaveraged the impor-

tance scores acrossall codons,wesaw thatbothDSN1andDSN2

place greatest importance on the second codon position and the

least importance on the third codon, or ‘‘wobble,’’ position (Fig-

ure 3C). While it is not clear why a greater importance would be

placed on the second codon position compared with the first

codon position, the fact that the wobble position has less overall

importance is intriguing, considering its often-redundant role in
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the codon. This implies that the model has learned to deprioritize

the identity of the wobble position when making its predictions.

Next, we looked at the average importance scores of each

unique codon across all true smORFs (Figure 3D). We found

that codons are highly correlated in their average importance

across the two models (Spearman’s r = 0.906; p < 2.2 3

10�16). When the importance score of each amino acid is aver-

aged across all codon synonyms, glutamate, aspartate, valine,

and alanine have the four highest average importance scores

for both DSN1 and DSN2. The four amino acids with the lowest

average importance scores across the two models are arginine,

serine, tryptophan, and cysteine. In the case of DSN2, the

average importance scores of these four amino acids are actu-

ally negative, indicating that on average these amino acids actu-

ally prompt the model toward making negative predictions,

implying that in certain contexts true smORFs may typically

lack these amino acids.

To further shed light on the inner workings of the DSN model,

we analyzed the average feature importance score for each

codon in the training set to determine if there was a significant

correlation with Shannon positional entropy of microprotein-

family multiple sequence alignments. We found that for the

training set on the whole, there is a slight negative correlation

(Pearson’s r = �0.0145; p < 1 3 10�16), indicating that regions

with higher positional entropy tend to have lower feature impor-

tance scores (Figure S4D). However, as we increased the mini-

mum number of unique microprotein sequences per family

above 40, we began to see a positive correlation between feature

importance and positional entropy. This suggests that while

there is some relationship between positional entropy and

feature importance, this may vary between microprotein families

of different sizes and it cannot fully explain the behavior of the

DSN models.

Finally, we investigated whether the deep learning models

learned to assign similar importance to codon synonyms. This

implies that some representation of the codon table was learned

during training. We developed a codon synonym similarity (CSS)

score, which is the average standard deviation of importance

values among codon synonyms (Figure 3E). First, we calculated

the CSS score for the DSN1 and DSN2 models, and then we

permuted the codon synonyms across the importance scores

to generate a null distribution of CSS scores. We found that for

both models, the true CSS score was very low in the range of

permuted CSS scores, indicating that codon synonyms share

similar importance scores and that some representation of the

codon table was learned by the model.

Core-Genome Analysis Identifies Core smORFs of
Unknown Function
Seeing the value in pre-computing smORF annotations for Re-

fSeq genomes for the scientific community, we used SmOR-

Finder to analyze 191,138RefSeq genomes in addition to theHu-

manMicrobiome Project (HMP)metagenomic samples that were

used as part of the initial smORF-family identification process.

This included genomes across 63 bacterial phyla, with 104,658

genomes belonging to members of the Proteobacteria phylum

and 19,681, 12,338, and 11,511 genomes belonging to Escheri-

chia coli, Staphylococcus aureus, and Salmonella enterica,

respectively. These data, along with other useful tools for
smORF analysis, are available through our web portal that can

be accessed through our github repository at https://github.

com/bhattlab/SmORFinder.

We carried out a core-genome analysis of 26 of the most com-

mon species’ genomes found in RefSeq (Table S3). Across the

26 species, we found that 692 putative smORFs were part of

the core genome (Figure 4A). These include all smORFs prior

to filtering according to DSN or pHMM significance cutoffs and

those annotated by Prodigal with lowered minimum size cutoffs.

The total number of such core smORFs varies widely across spe-

cies with 106 identified in Bacillus cereus and 4 identified in Hel-

icobacter pylori. However, the total number of core smORFs is

difficult to meaningfully compare across species, as they vary

in their overall diversity. Across all species, 70.7% of these

smORFs contain no recognized Pfam domains (El-Gebali et al.,

2019), 9.54% contain a ribosomal protein domain, and 19.77%

contain some other known domain.

When we then used our true smORF predictions as calculated

by the SmORFinder tool to filter this list of core smORFs, we

reduced the total number from 692 to 213 (Figure 4B). By default,

this tool uses an ensemble model that combines the predictions

of the three models (See Figure 1C). This enriches for smORFs

that contain a predicted Pfam domain, with 31.0% being ribo-

somal proteins, 30.49% containing some other Pfam domain

(including, among others, domains of membrane-bound YbgT-

like proteins, entericidins, andMultidrug efflux pump-associated

protein AcrZ), and 38.5% containing no Pfam domain. This list

can be further reduced by relying only on pHMM models of

known smORF families with a strict significance cutoff (E value <

13 10�6), resulting in 167 such core smORFs (Figure 4C). Using

only this significance cutoff as a filter, the total number of core

smORFs drops dramatically for some species, such as

B. cereus whose total number of core smORFs dropped from

23 to 8. We found that overall, using the smORFs identified by

the SmORFinder tool as opposed to the strict pHMMpredictions

alone, increases the number of core smORFs with a domain of

unknown function from 18 to 20, the number of core smORFs

with some other domain of known function from 37 to 45

(including Staphylococcus hemolytic domains and Stage V spor-

ulation domains), and the number of core smORFs with no

domain from 53 to 90.

We found four smORF families with no recognized Pfam

domain that appear in more than two different species’ core ge-

nomes (Figure 4D). The smORF-family smorfam02479 is homol-

ogous to YshB, a predicted transmembrane protein recently

shown to play a role in intracellular replication in Salmonella viru-

lence (Bomjan et al., 2019). We found that members of this

smORF family exist in the core genomes of S. enterica as well

as other Enterobacteriaceae such as E. coli, K. pneumoniae,

and S. sonnei. The smORF family smorfam02447, shown in Fig-

ure 4D, is a gene encoding a 40-aa protein found between genes

encoding the P loop guanosine triphosphatase, YjiA, and zinc

uptake system protein, ZnuA, in the Enterococcus faecalis

genome. Members of this smORF family were found in the

core genomes of S. aureus, S. agalactiae, S. pyogenes, and

E. faecalis, and its function has not been characterized. The

smORF family smorfam04045 protein shown in Figure 4D is a

49-aa protein found between genes encoding a largely unchar-

acterized protein and a predicted lipase in theB. cereus genome.
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Figure 4. Core-Genome Analysis Identifies Core smORFs of Unknown Function

(A) The total number of core smORFs found in each species’ genome. These smORFs were not filtered using DSN, all smORFs identified by the Prodigal

annotation tool (with a lowered minimum size cutoff of all smORF predictions greater than 15 nucleotides) were included.

(B) The total number of core smORFs identified by the SmORFinder annotation tool as being true smORFs. This includes all smORFs that meet strict significance

cutoffs for at least one model (pHMM E value < 13 10�6, DSN1 P(smORF) > 0.9999, or DSN2 P(smORF) > 0.9999), or those that meet lenient significance cutoffs

for all three models (pHMM E value < 1, DSN1 P(smORF) > 0.5, and DSN2 P(smORF) > 0.5).

(C) The total number of core smORFs per species that meet the pHMM significance cutoff of E value < 1 3 10�6. Colors indicate whether each core smORF

contains a Pfam domain (E value < 1 3 10�6 ), and which type. ‘‘Ribosomal’’ (yellow) implies a ribosomal protein domain, ‘‘domain of unknown function’’ (blue)

implies it has a recognized domain of unknown function, ‘‘other domain’’ (brown) indicates some other Pfam domain, and ‘‘no domain’’ (gray) indicates that it does

not contain any known Pfam domain.

(D) Four example core smORFs with no recognized Pfam domain that exist in the core genome of two or more species. Arrows indicate ORFs identified by

SmORFinder or by the Prokka annotation tool. The red regions indicate the position of each core smORF. The text indicates gene names as assigned by Prokka.

The absence of any gene name indicates that Prokka identified the genes as ‘‘hypothetical’’ proteins. The species to which each genome belongs is noted to the

left of the gene diagram, the smORF family (smORFam) ID and NCBI reference sequence ID are given in the strip above each region. See also Table S3.
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Members of this smORF family were found in the core genomes

of B. cereus, S. suis, and S. pyogenes, and the representative

member of this family is 91.8% identical to a B. manliponensis

gene described as an alcohol dehydrogenase in UniProt,
128 Cell Host & Microbe 29, 121–131, January 13, 2021
although most other homologs are described as uncharacter-

ized. In the S. aureus genome, the smORF family smorfam00860

shown in Figure 4D encodes a 44-aa protein found between the

genes that encode an uncharacterized protein and putative
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HMP/thiamine permease protein, YkoE,. Members of this

smORF family were found in core genomes of S. aureus and

S. epidermidis, and its function has not been characterized.

DISCUSSION

Recent advances in bioinformatic annotation approaches and de

novo annotation of genes using Ribo-seq have enabled the dis-

covery of thousands of smORFs. The microproteins that they

encode have emerged as macromolecules of interest in organ-

isms ranging from microbes to plants to mammals. Unfortu-

nately, to date, no method exists for the accurate annotation of

microbial genomes for these smORFs, and most existing micro-

bial genomes are lacking comprehensive annotation for ORFs of

less than 150 nucleotides in length. In this study, we present and

evaluate the performance of a smORF annotation pipeline based

on the 4,500 smORFs identified by Sberro et al. (2019). We

demonstrate that deep learning models can distinguish between

true smORFs and spurious smORFs almost as well as pHMMs

trained on observed smORF families, and they perform better

than pHMMs on unobserved smORF families.

We found that both the deep learning models and the pHMMs

dramatically increase the Ribo-seq and MetaRibo-seq enrich-

ment signal of the annotated smORF set. This suggests that se-

lecting smORFs based on the predictions of these models

greatly enriches for actively translated and thus likely functional

smORFs. Including the three different models (DSN1, DSN2, and

the pHMMs) in theSmORFinder annotation tool enables a user to

select a range of options for filtering a set of candidate smORFs.

For example, rather than relying on a strict significance cutoff for

one or multiple models, we found that using lenient significance

cutoffs that must be met by all three models is another good

strategy for narrowing down a list of candidate smORFs. We

recommend using the default ensemble model to achieve a bal-

ance between recall and precision when annotating smORFs,

but for applications where precision ismore important than recall

we recommend using even more stringent cutoffs or relying

exclusively on the pHMMs with a stringent cutoff.

Recent advances in feature importance analysis allow us to

peer into the ‘‘black box’’ of deep learning. This is a fascinating

look at how these powerful predictive algorithms learn to identify

true smORF families, and we can see that they automatically

learn features that scientists had previously characterized by

experimental means (Shine-Dalgarno sequences, codon period-

icity, codon synonyms, etc.). It also acts as an interesting oppor-

tunity to find generalizable features that may previously have

gone unnoticed. For example, DSN2 appears to assign greater

importance to 30 downstream sequences that are A-rich. This

could indicate that the model has learned to recognize rho-inde-

pendent (intrinsic) transcription termination sequences, which

are known to contain a chain of uracils in the mRNA transcript

(d’Aubenton Carafa et al., 1990; Peters et al., 2011). Intrinsic

terminator sequences are not taken into consideration by ORF

annotation algorithms such as Prodigal (Hyatt et al., 2010).

Our core-genome analysis of 26 different bacterial species

identified many smORFs that appear to be highly conserved,

including smORFs that were identified using permissive Prodigal

annotation and clustering before any SmORFinder models were

applied. Using SmORFinder predictions to filter these core
smORFs showed a significant reduction in the total number of

smORFs for some species. For example, 106 core smORFs

were found in B. cereus genomes prior to SmORFinder filters

and were reduced to only 8 core smORFS after applying strict fil-

ters. This could indicate that there are many smORFs that were

not found in the initial set of core smORFs but are found in the

B. cereus genome or that a large number of the core smORFs

found in theB. cereus genome are false positives. Further exper-

iments and efforts to supplement our set of core smORFs will

likely shed light on this question.

While efficient and powerful, the approach that we took in this

study has several limitations. First, the SmORFinder annotation

tool is primarily limited by the Prodigal calling algorithm. The

original set of >4,500 families identified by Sberro et al. relied

on a downstream analysis of smORFs that were identified by

Prodigal with a lowered minimum size threshold. This resulted

in a set of candidate microproteins that are still biased toward

the larger end of this size distribution. SmORFinder is also limited

to predictions made by Prodigal and can be thought of as an

additional filter step on top of Prodigal predictions. Second, we

are also limited by the accuracy of the predictions made by

Sberro et al. in their original study. In the course of completing

this analysis, we identified 15 smORFs that were false positives;

while this is a relatively small number of overall false positives, it

is likely that there are other such false positives in the overall set.

Third, the true generalizability of the models introduced in this

study is also questionable. That is, it does not appear that the

model can reliably identify true smORFs that are completely un-

related to smORFs in the original training set. This means that a

number of true smORFs that are not represented in the training

set will be overlooked by our tool. Due to the origin of the

4,500 smORF families used in the training set, SmORFinder is

particularly well-suited for the analysis of human microbiomes

and it may not as readily generalize to species limited to other en-

vironments. Finally, we rely on Ribo-seq signals as a test of

whether our model enriches for true microproteins, and we

acknowledge that Ribo-seq may not be able to accurately iden-

tify true smORFs in all circumstances.

Notwithstanding these limitations, with the growing interest in

microproteins, SmORFinder should be valuable to the research

community, as it will allow researchers to filter down lists of

candidate smORFs to a more accurate list of smORF predic-

tions. We have precomputed the smORFs of thousands of bac-

terial RefSeq genomes and HMP metagenomes and have made

them available for download through a web portal. The annota-

tion tool can easily be installed as a Python package and is ready

for use. This will enable the study of smORFs, opening up many

avenues for biological research. For example, the reannotation

of these bacterial genomes could help gain insights into previ-

ously conducted experiments, such as transposon-mutagenesis

experiments, affording researchers a wealth of functional data.

Data are freely available for the research community through

our github repository and web portal (https://github.com/

bhattlab/SmORFinder). It is possible that a suite of tools,

including but not limited to SmORFinder, will be developed

and applied for the comprehensive, sensitive, and specific

detection of smORFs across prokaryotes. As such, we anticipate

that SmORFinder may be augmented by other models as they

are published and thoroughly validated.
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SmORFinder

Software and Algorithms

SmORFinder Software andDBSmORFWeb

Portal
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Further information regarding the data and code presented in this study is available through the LeadContact, Ami S. Bhatt (asbhatt@

stanford.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The code for SmORFinder is available at github.com/bhattlab/SmORFinder. The web portal can be accessed through the github re-

pository. A link to the web portal is available on the github. All data used to train themodels presented in this study are available in the

github repository github.com/bhattlab/SupplementaryInformation/tree/master/SmORFinder.

METHOD DETAILS

Curating Positive and Negative Training Examples
A critical first step in any approach to develop a homology/pattern-based annotation algorithm is the development of a positive and

negative training set. In this case, positive and negative examples of smORFs were needed to train the neural network. Positive
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examples were derived from the 4,539 microprotein families that were originally reported by Sberro et al. (2019). A maximum of 64

examples per protein family were kept, and these 64were randomly chosen. 100 base pairs of upstream and downstream sequences

were used as model inputs, along with the ORF sequence itself. In the event that the upstream and downstream sequences were

shorter than 100 base pairs, whatever sequencewas available was used. The strategy used to identify negative examples was similar

to the one used to identify the positive examples, but with criteria reversed. Prior to applying filters, Sberro et al. identified approx-

imately 444,000microprotein family clusters (clustered using CD-HIT with the parameters -n 2 -p 1 -c 0.5 -d 200 -M 50000 -l 5 -s 0.95

–aL 0.95 –g 1). To identify negative examples (smORF families that are most likely spurious ORFs), the following filters were applied:

First, smORF clusters were excluded if they were predicted to contain a known protein domain according to an Reversed Position

Specific (RPS) BLAST search of the ConservedDomains Database (CDD) database (A predicted domainwas considered significant if

the e-value was less than or equal to 0.01, and themicroprotein sequence aligned to at least 80%of the length of the position-specific

scoring matrix (PSSM)) (Lu et al., 2020). Next, families with less than 4 uniquemembers were excluded, as this is too few examples to

be properly analyzed by RNAcode. Next, RNAcode was run on each family with the parameter –num-samples 200, and default pa-

rameters otherwise. RNAcode can identify conserved coding sequences with samples as small as 4 unique examples, but the

average pairwise identity of these examples must be below 90% (Washietl et al., 2011). For families with 4 to 7 members, the RNA-

code results were considered only if this average pairwise identity threshold was met for the family. With families that contained >8

members, at least one pair had to fall below the 90% identity threshold to be considered. Any families that were predicted by RNA-

code to contain coding sequence (CDS) regionswere excluded. Next, protein families were aligned to each other using theDIAMOND

search algorithm (Buchfink et al., 2015). If any remaining negative example was a significant (E value < 1e-3) match for any positive

example, it was excluded. If any negative example aligned to another negative example that failed the RNAcode conserved CDS

detection, it was also excluded. This resulted in 4,705 high-confidence negative microprotein "families." To further supplement

this dataset of negative examples, more negative examples were synthesized by shuffling upstream, downstream, and ORF nucle-

otide sequences. Both positive and negative sequence examples were shuffled using a tetramer shuffling algorithm implemented by

fasta-shuffle-letters in the MEME Suite (Bailey et al., 2009), which was built on the uShuffle algorithm (Jiang et al., 2008). Start and

stop codons were preserved, and shuffled ORF sequences were only kept if they could be fully translated using the same translation

table as the original sequence. This was to ensure that the deep learning model would learn to discriminate true positives from

random sequences. In summary, the two types of negative data included were 1) Randomly shuffled tetramers of both positive

and negative examples (called ‘‘shuffled negatives’’ and 2) naturally occurring smORFs that have no conservation signal attributable

to ORFs, and do not contain known protein domains (called ‘‘curated negatives’’). The final ratio of positive to negative examples

was 0.417.

Splitting Dataset into Training, Validation, and Test Sets
We used a stratified sampling approach to randomly split the full dataset into training, validation, and test sets (Figure S1A). First, we

made sure that each dataset had at least onemember of each smORF family, which were randomly distributed across the three data-

sets. After this requirement was met, the remaining examples were randomly allocated to the three different datasets, with approx-

imately 80% being allocated to the training set, 10% to the validation set, and 10% to the test set. The final training set included

367,184 examples (112,427 positive, 254,757 negative), the final validation set included 47,248 examples (13,192 positive, 34,056

negative), and the final test set included 46,932 examples (12,933 positive, 33,999 negative). The training and validation sets were

combined and permuted such that certain protein families in the validation set were excluded from the training set (unobserved

smORF families). These permuted datasets were used to estimate the performance of themodel on the unobserved smORF families.

Deep Learning Model Architecture and Hyperparameter Tuning
Hyperparameter tuning was used to identify model architectures that performed best on the validation dataset. The basic model

included three inputs, a one-hot encoded vector with dimensions 153x4 to represent the smORF sequence itself, with zeroes padded

on the right for smORFs shorter than 153 bp, 100 bp upstream of each smORF encoded as a 100x4 vector, and 100 bp downstream

of each smORF encoded as a 100x4 vector. These are then fed into one-dimensional convolutional layers, which are followed by a

dropout layer and a pooling layer. All three input branches are flattened and concatenated as a single vector, which is processed by a

final dense layer, a dropout regularization, and a final dense layer with a sigmoid activation function that calculates the probability that

the input smORF is a true smORF. Themany hyperparameters in this model were tuned using the hyperband algorithm (Li et al., 2017)

as implemented by the keras-tuner python package (O’Malley, 2020). This algorithm randomly sampled the hyperparameter space,

including number of convolutional layers per input branch (1, 2, or 3), the number of filters per layer (32, 64, 128, 256, 512, or 1024), the

size of each filter (6, 12, 18, or 24), the dropout rate of the convolutional layers (0.1, 0.3, or 0.5), the dropout rate of the final dense layer

(0.1, 0.3, or 0.5), the number of neurons in the final dense layer (16, 32, 64, 128, 256, or 512), the learning rate (1e-5, 1e-4, or 1e-3), the

padding method (‘‘valid’’ or ‘‘same’’), and the pooling method (max pooling or average pooling). Adam optimization with a learning

rate of 1e-4 was used to train the model (Kingma and Ba, 2014). After the first convolutional layer, the number of convolution filters is

divided by 2, and the filter size is reduced by one-third of the original filter size. For example, if a model had three layers and 1024

filters of length 18, the second layer would have 512 filters of length 12, and the third layer would have 256 filters of length 6. Our aim

was to identify models that minimized the loss across the ‘‘Validation - Observed’’ dataset, and maximized the F1 score of the ‘‘Vali-

dation - Unobserved’’ dataset. Hyperband was run with a maximum number of epochs of 200 and a downsampling factor of 3 over 4

complete iterations, resulting in 512 different hyperparameter combinations. This was repeated for both the ‘‘Validation - Observed’’
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and ‘‘Validation - Unobserved’’ datasets. Finally, the same process was repeated with an additional LSTM layer added at the end of

each input branch, which added hyperparameters including the number of LSTM neurons per input branch (16, 32, 64, 128, or 256)

and the LSTM dropout rate (0.1, 0.3, or 0.5). DSN1 and DSN2 were chosen as the models with the best loss in calculated over the

‘‘Validation - Observed’’ dataset, and the best F1 score calculated over the ‘‘Validation - Unobserved’’ dataset, respectively. See

Figure S1 for a final description of each model’s hyperparameters.

Building Profile Hidden Markov Models
Using the positive examples (true smORFs) of each protein family found in the training dataset, profile HMM models were con-

structed. Microprotein families were aligned using MUSCLE (Edgar, 2004). We then used the command line tool hmmbuild to

construct the pHMM for each family (HMMER, no date). All pHMMs were combined into a single file, and the E value of the

pHMM with the lowest pHMM is used to assign a given sequence to a smORF to a family.

Determining How Deep learning Models and Profile HMMs Generalize to Unobserved smORF Families
A permutation approach was used to determine how well the deep learning models and pHMMs generalize to Unobserved smORF

families. As depicted in Figure S1A, the training set and validation set were combined, and the two validation sets were created - one

that contained smORF families that were observed at least once in the training set (Validation - Observed), and one that contained

smORF families that were not observed in the training set (Validation - Unobserved). The smORF families that were excluded from the

training set were randomly chosen, and this process was repeated 64 times to create 64 train-validation splits. The deep learning

models (DSN1 and DSN2) were both trained on all 64 training sets for up to 2000 epochs to minimize the training loss. Early stopping

was used to choose the model that had no improvement in the calculated ‘‘Validation - Observed’’ loss after 100 epochs. This final

trained model was then evaluated on the training set and validation sets to estimate the model’s precision, recall, and F1 score. The

distribution of these performance metrics across the 64 permuted datasets was used to determine the error of each estimate as

shown in Figure 1A. The pHMMmodels were also trained independently on the same 64 permuted datasets to get comparable per-

formance estimates.

Finalizing Deep Learning Model
We trained the final deep learning models and pHMMs on the initial, unmodified training set (Figure S1A). We selected the deep

learning models with the lowest loss in the validation set, with a maximum of 2000 training epochs and early stopping after 100

epochs of no improvement in the validation loss. We then evaluated all models on the validation set and the test set, which was

held out from the beginning and was not included in the model architecture selection process. These final models are included in

the SmORFinder annotation tool in its current implementation.

Validating SmORFinder with Ribo-Seq Datasets
Ribo-Seq datasets were used to determine whether the SmORFinder annotation tool enriches for actively translated smORFs. We

used previously published Ribo-seq datasets that are available through the NCBI SRA portal under the projects BioProject:

PRJNA540869 (Ribo-Seq of B. thetaiotaomicron isolate) and BioProject: PRJNA510123 (MetaRibo-Seq of human stool samples

from 4 individuals) (Sberro et al., 2019; Fremin et al., 2020). The B. thetaiotaomicron reference genome was annotated using Prodigal

configured to identify smORFs. Assembled metagenomes of the 4 MetaRibo-Seq samples were also annotated and used as a refer-

ence for each respective sample. Ribo-Seq readswere aligned to reference genomes using bowtie2 (Langmead and Salzberg, 2013).

Ribo-Seq coverage of each predicted ORF was calculated using bedtools (Quinlan and Hall, 2010). Any ORF that had a calculated

RPKM R0.5 was considered to have a Ribo-Seq signal. The SmORFinder annotation tool was used to identify predicted smORFs.

Any smORF that met at least one of the significance cutoffs (pHMM E value < 1; DSN1 > 0.5; DSN2 > 0.5) was considered a potential

smORF. All smORFs that did not meet any of these cutoffs were considered ‘‘Rejected smORFs’’. Different subsets of smORFs were

identified based on their statistical significance and agreement across the three different models. These subsets were compared to

the ‘‘Rejected smORFs’’ subset in terms of Ribo-Seq signal, and Fisher’s exact test was used to determine if the subset significantly

differed.

Feature Importance Analysis
A feature importance analysis of both the DSN1 and DSN2models was performed to interpret, in part, how the deep learning models

were learning to identify true smORFs. This was done using the DeepLIFT algorithm (Shrikumar et al., 2017) as implemented in the

SHAP python package (Lundberg and Lee, 2017). This technique measures the importance of individual features, nucleotides in this

case, in determining the model’s prediction relative to some references. Dinucleotide shuffling of upstream and downstream nucle-

otide sequences were used as a reference. The start and stop codons of the ORF sequences were preserved in the references, and

the intermediate sequence was dinucleotide shuffled until a non-interrupted ORF was generated. Twenty shuffled references were

used for each example. Averages across all examples in the training dataset are shown in Figure 3.

Codon Synonym Similarity Score
A codon synonym similarity score (CSS score) was calculated to determine how similar the DeepLIFT importance scores were for

codons that code for the same amino acid. This was calculated as:
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CSS score =
1

k

Xk

i = 1

bs i

Where bs i is the standard deviation of the average feature importance scores for codon synonymgroup i. This was calculated for k =

18 amino acids, excluding methionine and tryptophan, which only have one codon for each. To determine a null distribution of this

score, codon synonym labels were randomly permuted across the feature importance scores, and the CSS score was recomputed.

This was repeated 10,000 times to calculate a permuted null distribution. The original CSS score was compared to this permuted null

distribution to determine its statistical significance.

Annotating smORFs in RefSeq Genomes
All RefSeq bacterial genomes were downloaded on April 29th, 2020. This included all genomes matching the NCBI Entrez search

query ‘"Bacteria"[Organism] AND (latest[filter] AND (all[filter] NOT anomalous[filter] AND all[filter] NOT partial[filter]))’. In total,

191,138 genomes were downloaded. These were annotated using the SmORFinder annotation tool, and data were compiled into

a database that can be accessed through the github repository https://github.com/bhattlab/SmORFinder.

Core-Genome Analysis
A core-genome analysis was carried out on 26 bacterial species with a high number of available isolates (Table S3). This included Aci-

netobacter baumannii,Bacillus cereus,Burkholderia pseudomallei,Campylobacter jejuni,Clostridioides difficile, Enterococcus faecalis,

Enterococcus faecium, Escherichia coli, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes,Mycobacterium tubercu-

losis, Mycobacterium abscessus, Neisseria meningitidis, Pseudomonas aeruginosa, Pseudomonas viridiflava, Salmonella enterica,

Shigella sonnei, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumoniae, Strepto-

coccus pyogenes, Streptococcus suis, Vibrio cholerae, and Vibrio parahaemolyticus. Mash distances for all isolates of each species,

and only isolates that had an averagemash distance < 0.05 (corresponding roughly to 95%average nucleotide identity (ANI)) to all other

isolates of the specieswere kept (Ondov et al., 2016). All isolate genomeswere annotated using Prodigal (Hyatt et al., 2010) to identify all

open reading frames,with theminimumgene size filter lowered to 15nucleotides. All identified protein sequenceswere thenclustered at

80% identity using CD-HIT (Huang et al., 2010), where each cluster represented a unique ‘‘gene’’. All genes that were found to exist in

greater than 97% of all isolates for each species were considered to be part of that species’ ‘‘core genome.’’

Comparison to k-nearest Neighbors Algorithm
The k-nearest neighbor algorithm was used as a comparison with the trained DSN models. The k-mer composition of the smORF

nucleotide sequences, the smORF+US+DS sequences, and the microprotein sequence was calculated in python. For nucleotide

sequences, the 1-mer, 2-mer, 3-mer, and 4-mer compositions were calculated. For protein sequences, the 1-mer and 2-mer com-

positions were calculated. This was repeated for all 64 randomized validation sets. The distance between each example in the ran-

domized ‘‘Validation - Observed’’ and ‘‘Validation - Unobserved’’ sets and all of the examples in the training set was calculated using

numpy. Themode of the labels of the top k-nearest neighbors was used as the final prediction, with k = 1, 3, 5, 7, 8, and 11 being used.

Correlation between Feature Importance and Positional Entropy
The correlation between feature importance of the smORF sequence as calculated by DeepLIFT and Shannon positional entropy of

each amino acid in the microprotein family multiple sequence alignment was calculated. The average feature importance of each

codon was used to directly compare with microprotein positional entropy. Only the final training set examples were used for the anal-

ysis, with the initial methionines being excluded. The Pearson correlation coefficient was calculated and the significance of the cor-

relation was calculated using the cor.test function in R. An iterative filter was applied to the examples by only including families that

had a minimum number of unique examples in the training set, and the correlation test was repeated.

QUANTIFICATION AND STATISTICAL ANALYSIS

All details of statistical analyses and software used in this study can be found in themethod details, which we summarize here briefly.

Statistical analyses were all conducted in the R programming language. A paired t-test was used to compare performance metrics of

different models across the 64 randomized training and validation sets. For Ribo-Seq andMetaRibo-seq enrichment tests, a Fisher’s

exact test was used to determine if specific subsets of smORFs were enriched or depleted or Ribo-Seq signal relative to the ‘‘Re-

jected smORFs’’ category.

ADDITIONAL RESOURCES

A web server that includes (a) pre-computed smORF annotations for RefSeq genomes and HMP metagenomes and (b) a tool to

enable uploading and annotation of genomes of interest is linked to at the bottom of the smORFinder github repository webpage:

https://github.com/bhattlab/SmORFinder.
Cell Host & Microbe 29, 121–131.e1–e4, January 13, 2021 e4

https://github.com/bhattlab/SmORFinder
https://github.com/bhattlab/SmORFinder

	Automated Prediction and Annotation of Small Open Reading Frames in Microbial Genomes
	Introduction
	Results
	Deep Learning Models Detect Unobserved smORF Families with Greater Recall and F1 Scores than Profile HMM Models
	Predicted smORFs Are Enriched for Ribo-Seq Signal
	Feature Importance Analysis Reveals Inner Workings of Deep Learning Models
	Core-Genome Analysis Identifies Core smORFs of Unknown Function

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Method Details
	Curating Positive and Negative Training Examples
	Splitting Dataset into Training, Validation, and Test Sets
	Deep Learning Model Architecture and Hyperparameter Tuning
	Building Profile Hidden Markov Models
	Determining How Deep learning Models and Profile HMMs Generalize to Unobserved smORF Families
	Finalizing Deep Learning Model
	Validating SmORFinder with Ribo-Seq Datasets
	Feature Importance Analysis
	Codon Synonym Similarity Score
	Annotating smORFs in RefSeq Genomes
	Core-Genome Analysis
	Comparison to k-nearest Neighbors Algorithm
	Correlation between Feature Importance and Positional Entropy

	Quantification and Statistical Analysis
	Additional Resources



