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SUMMARY
Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biolog-
ical discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases,
their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular
toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over
127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to
build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types.
Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly
efficient guides. We next identified and screened 46 novel Cas13d orthologs, finding that DjCas13d achieves
low cellular toxicity and high specificity—even when targeting abundant transcripts in sensitive cell types,
including stem cells and neurons. Our Cas13d guide efficiency model was successfully generalized to
DjCas13d, illustrating the power of combining machine learning with ortholog discovery to advance RNA tar-
geting in human cells.
INTRODUCTION

The ability to perturb desired RNAmolecules with high efficiency

and specificity is required for functional elucidation of the tran-

scriptome and its diverse phenotypes. Despite rapid progress

in effective technologies for genome engineering, analogous

systems for transcriptome engineering lag behind their DNA

counterparts. Although RNAi has long been used for RNA knock-

down, it is challenging to engineer and suffers from widespread

off-target effects1,2 due to its important role in endogenous

miRNA processing.3 The discovery and development of

RNA-guided RNA-targeting CRISPR systems, such as Cas13

enzymes, provides an orthogonal and modular approach to

overcome these limitations.4,5 Because CRISPR proteins are

orthogonal to eukaryotic systems, they can be easily engineered

to bind or cleave target RNA molecules. Furthermore, their

modular nature enables the facile fusion of effector domains to

expand effector functionality. As a result, a broad suite of

Cas13-based tools is now able to perturb RNA expression6,7
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or splicing,7 mediate RNA editing8–10 or methylation,11 and pro-

file RNA-protein interactions.12 These capabilities are now

accelerating applications across the study of fundamental RNA

biology, RNA-based therapeutics, and molecular diagnostics.

The Cas13 family is unified by the presence of two conserved

HEPN ribonuclease motifs, and these enzymes are activated

upon binding to cognate target RNA as specified by the Cas13

guide RNA.4,5,13,14 Several subtypes have been defined on

the basis of sequence diversity and domain architecture.

Cas13d enzymes—in particular the engineered Cas13d from

R. flavefaciens strain XPD3002 (CasRx)7—are the smallest and

most efficient Cas13 RNA-targeting effectors in mammalian

and plant cells reported to date,15–17 motivating their further

characterization and optimization as RNA-targeting tools. In or-

der to successfully apply Cas13d in high-throughput applica-

tions, the ability to design highly effective guide RNAs is critical.

Recent efforts to understand and predict Cas13d guide activity

have taken a first step in this direction, by using a dataset of

2,918 guide RNAs across four transcripts to train a random forest
–1102, December 20, 2023 ª 2023 Published by Elsevier Inc. 1087
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(RF) model15 and by using combined datasets of 10,279 guides

to train a deep learningmodel.18 In addition to the relatively small

datasets, the manual selection of guide sequence features15 or

lack of secondary features18 has limited a broader understand-

ing of Cas13d targeting preferences.

Here, we conducted the largest Cas13d screen to date, quan-

tifying CasRx guide efficiency across >127,000 guide RNAs tiling

55 essential transcripts by measuring their effects on cell prolif-

eration in human cells. We systematically compared a series of

computational models on this dataset to predict guide activity.

A deep learning convolutional neural network (CNN) model was

able to most accurately predict highly effective guides. Model

interpretation enabled us to discover a preferred sequence motif

at spacer position 15–24, along with a preference for low guide

free energy and high target region accessibility for high-effi-

ciency guides. We validated the model against orthogonal data-

sets and confirmed high accuracy across several target tran-

scripts and in five different cell types.

Across the Cas13 subtypes structurally characterized to date,

the RNA cleavage site formed by the two HEPN domains is

located distal to the guide binding groove,13,14,19 which can

result in the cleavage of non-target bystander RNA molecules

(known as ‘‘collateral’’ cleavage) in vitro by the HEPN domains

activated upon target RNA binding. Initial reports for Cas13a,

b, and d systems in routinely usedmammalian cell lines reported

a low degree of off-target effects in eukaryotic cells.6–8 However,

more recently, several groups reported cellular toxicity and

more pronounced off-target effects of CasRx, LwaCas13a, and

PspCas13b in sensitive cell types,20,21 in vivo,22 and when tar-

geting highly expressed transcripts.23

To understand if this cellular toxicity is shared across Cas13

orthologs, we computationally identified 46 novel Cas13d

orthologs from recently reported prokaryotic genomes and

metagenomic contigs and screened them for target transcript

knockdown activity and cytotoxic effects in human cells. We

identified DjCas13d, a highly efficient ortholog with minimal

detectable cellular toxicity when targeting highly expressed tran-

scripts across multiple cell types, including human embryonic

stem cells (hESCs), neural progenitor cells, and neurons.

Furthermore, we show that our CasRx-based guide design

model extends to DjCas13d and accurately selects highly

efficient guides, illustrating its generalizability across effectors

and cell types. Overall, we advance the transcriptome engineer-

ing toolbox by developing a robust Cas13d guide design algo-

rithm based on a high-throughput guide screen (https://www.

RNAtargeting.org) and identifying a compact and high-fidelity

Cas13d ortholog for efficient RNA targeting. Finally, we outline

a strategy to systematically develop and interpret robust deep

learning models for sequence-based classification.

RESULTS

Evaluation of Cas13d guide RNA efficiency based on
large-scale transcript essentiality screening
In order to systematically understand the factors impacting

Cas13d guide efficiency, we generated a library of more than

100,000 RfxCas13d (CasRx) guide RNAs (sgRNAs) and evalu-

ated their efficiency in a large-scale pooled screen. Reasoning

that CasRx knockdown of essential transcripts would lead to
1088 Cell Systems 14, 1087–1102, December 20, 2023
the depletion of highly effective guides due to reduced cellular

proliferation, we selected a set of 55 essential genes identified

in three previously reported survival screens performed with

RNAi and CRISPR interference (CRISPRi) in K562 cells24–26 for

a proliferation-based survival screen. K562 cells were selected

due to their ease of use in pooled screens and our observation

of variable CasRx-mediated endogenous protein knockdown

across different sgRNAs in this cell line (Figures S1A and S1B).

To perform the screen, we first generated a stable K562 cell

line via transfection of an all-in-one plasmid encoding the

CasRx effector, PiggyBac transposase, and an antibiotic selec-

tion cassette. Next, we designed CasRx guides that tile the 50

UTR, coding sequence (CDS), and 30 UTR of the 55 essential

transcripts with single-nucleotide resolution. As controls, we de-

signed guides tiling 5 non-essential transcripts as well as 3,563

non-targeting guides. The effector cell line stably expressing

CasRx was transduced with a pooled lentiviral library containing

all 144,745 guide RNAs. Cells were cultured for 14 days, after

which we analyzed guide abundances by NGS and computed

a depletion ratio for each guide compared with its original abun-

dance in the input library (Figure 1A). Analysis of the cumulative

distribution of guide day 14/input ratio demonstrated that the top

20th percentile of guides targeting essential transcripts is clearly

separated from guides targeting non-essential transcripts or

non-targeting guides (Figure 1B).

Essential transcripts may vary in their magnitude of impact

on cell proliferation and survival upon depletion. A transcript-

level analysis of guide depletion confirmed this expectation

(Figure S1C). To compensate for this in our analysis going for-

ward, we selected the most effective guides for each individ-

ual transcript (see STAR Methods for a full description of se-

lection parameters) as high-efficiency guides. A heat map

representation of the positions of these high-efficiency guides

within each target transcript revealed a striking degree of

clustering, leading to guide hot spots and deserts along the

transcript and clearly deviating from a random distribution

(Figure 1C). Multiple factors could be responsible for the

observed clustering of high-efficiency guides, including

sequence-, structure-, or position-based effects of the guide

RNA or target transcript.

Prediction of CasRx guide activity based on guide RNA
sequence alone
We sought to systematically analyze these potential features that

could distinguish high-efficiency Cas13d guides and develop

computational algorithms to predict guide efficiency. Initial anal-

ysis of the correlation of nucleotide identity with guide efficiency

at each position along the 30 nt spacer showed a preference for

G and C at the direct repeat-proximal spacer positions 15–24

(Figure S2A). Therefore, we reasoned that spacer sequence

alonemight be predictive of guide efficiency. We then developed

a series of computational models for prediction of guide effi-

ciency based on one-hot encoding of the 30 nt guide spacer

sequence without manual sequence feature selection. To under-

stand the impact of computational model type on prediction ac-

curacy, we systematically built and assessed the following

models: 3 linear models employing logistic regression (lasso

regression [L1], ridge regression [L2], or elastic net [EN]), 2

ensemble models (RF and gradient-boosted tree [GBT]), and 2

https://www.RNAtargeting.org
https://www.RNAtargeting.org
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Figure 1. Deep learning of Cas13d guide RNA efficiency based on large-scale transcript essentiality screening

(A) Schematic of the pooled CasRx guide tiling screen for essential transcript knockdown as a readout of per-guide knockdown efficiency. Over 127,000 targeting

guide RNAs were included.

(B) Cumulative distribution of the ratio of relative guide abundance at day 14 compared with the input library across guides targeting essential gene transcripts

(blue), non-essential gene transcripts (orange), and non-targeting guides (green). The red dashed line indicates the ratio at the top 20th percentile of essential

transcript targeting guides.

(C) Heat map of the positional distribution of high efficiency guides along each transcript. From here forward, high-efficiency guides are defined as the top 20%

guides within each transcript with a day 14/input ratio lower than 0.75 after essential off-target filtering. Heat map color indicates the number of overlapping high-

efficiency guides at each nucleotide position along the transcript, and the histogram (right) depicts the observed distribution of these data (blue) as comparedwith

a distribution of a randomly sampled set of 20% of guides in the library (orange curve).

(D) Schematic of the computational models assessed in this study to predict guide efficiency based on spacer sequence alone.

(E) Comparison of prediction accuracy between linear, ensemble, and deep learning models across 9-fold splits of essential transcripts. Area under the receiver

operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) across test sets from all 9 splits are shown with mean ± SD. LR – L1,

logistic regression with L1 regularization (lasso regression); LR – L2, logistic regression with L2 regularization (ridge regression); LR – EN, logistic regression with

elastic net regularization (elastic nets); GBT, gradient-boosted tree; RF, random forest classifier; CNN, convolutional neural network; biLSTM, bidirectional long

short-term memory neural network. Note that the baseline for AUPRC is equal to the fraction of positive class (high-efficiency guides), in this case 0.18.

(F) Secondary features were evaluated for their ability to improve sequence-only model performance. Each secondary feature (or feature group) was added to the

guide sequence only CNNmodel sequentially, ordered by its individual contribution tomodel performance in Figure S2K. AUROC and AUPRC of all test sets from

the 9-fold splits of transcripts are shown with mean ± SD.
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deep learning models (CNN and bidirectional long short-term

memory neural network [LSTM]) (Figure 1D).

All of these models were trained to classify high-efficiency

guides for target transcripts. Due to the observed high degree

of clustering of effective guides along a transcript (Figure 1C),

models that are tested on held-out guides from the same

transcripts they were trained on would potentially be subject to

overfitting by learning the targeting hotspots specific to those

transcripts. To alleviate overfitting and ensure model generaliz-

ability to other transcripts, we employed 9-fold cross-validation

on the 54 target transcripts (leaving out RPS19BP1 as it clus-

tered with non-essential transcripts; Figure S1C), with models

being trained and tested on non-overlapping sets of transcripts.

We compared the performance of all 7 models and observed

high model performance for the gradient-boosted tree (GBT)

and the two deep learning models based on area under the

receiver operating characteristic curve (AUROC), which evalu-

ates prediction accuracy for both the positive class (high-effi-

ciency guides) and the negative class, and area under the

precision-recall curve (AUPRC) metrics, which focuses primarily

on the prediction accuracy of the positive class (high-efficiency

guides), across all 9-fold splits (Figure 1E).

Overall, the CNNmodel performed best with a high AUROC of

0.845 (relative to a baseline of 0.5) and a high AUPRC of 0.541

(relative to a baseline of 0.18); hence, we chose this model for

further refinement and evaluation. The high prediction accuracy

of this model based on the spacer sequence alone indicates that

sequence is a primary factor determining guide efficiency. We

further determined that the addition of target flanking sequences

of varying length from 1–7 nt to the CNNmodel did not meaning-

fully improve model performance (Figure S2B), consistent with

our previous biochemical studies suggesting a lack of strong

flanking sequence requirements.7 To understand the minimal

spacer length required for accurate prediction, we computation-

ally truncated the spacer sequence from the 30 end in the CNN

model input and found only a minor impact on model accuracy

until reaching a spacer length of 24 nt, after which a gradual

drop in AUROC and AUPRCwas observed (Figure S2C).We vali-

dated this experimentally, demonstrating decreasing target

knockdown when using guides shorter than 24 nt in spacer

length (Figure S2D).

Addition of secondary features improves guide
efficiency prediction accuracy
Beyond guide sequence alone, secondary guide attributes, such

as guide unfolding energy or target site position (CDS or UTR),

may impact guide performance. To understand their potential

contribution, we first evaluated the correlation of such secondary

features with guide efficiency (Figure 1F schematics and S2E–

S2J). We found that higher predicted guide and target RNA un-

folding energy, implying more highly structured RNA sequences,

were predictive of poor guide efficiency. We also observed a

preference for intermediate spacer GC content (45%–55%),

guides targeting the coding region (CDS), as well as guides tar-

geting regions conserved across transcript isoforms.

As most of the secondary features investigated exhibited a

modest correlation with guide efficiency, we tested whether

they would improve model performance when added to the

spacer sequence-only CNN model. When adding these features
1090 Cell Systems 14, 1087–1102, December 20, 2023
individually, we found that the guide target site position had the

most prominent effect, followed by target and guide RNA unfold-

ing energy (Figure S2K). The addition of spacer GC content did

not significantly improve model performance, consistent with

our expectation that this feature has been successfully captured

by the spacer sequence-only CNNmodel. Sequentially including

each secondary feature ranked by their individual contribution

into the sequence-only CNN model, we found that AUROC and

AUPRC were improved with each addition, leading to a final

model with a very high average AUROC of 0.875 and a high

average AUPRC of 0.638 across the 9-fold splits (Figures 1F

and S2L–S2N for feature variations). Adding the same set of sec-

ondary features also improved the GBT model (Figures S3A–

S3C), the best-performing model not based on deep learning,

indicating the importance of these secondary features for guide

efficiency.

One of the key applications of a predictive model like this one

would be to accurately predict the most effective guides in order

to aid in guide and library design. The CNN model returns a float

score ranging from 0 to 1 for every guide, and different thresh-

olds can be chosen for high-efficiency guide classification. To

evaluate model performance for optimal guide selection, we

set a high model score threshold of 0.8 and plotted the true

percentile rank distribution of the guides above the score

threshold. As expected, the guides were heavily skewed toward

the highest efficiency ranks, with a true positive ratio of 0.83

(83% being true high-efficiency guides [top 20th percentile]).

Setting an even more stringent model score threshold to 0.9

further increased the true positive ratio to 93% (Figure S2O).

Model interpretation reveals favored sequence and
secondary features of high-efficiency guides
Having built high-performance models that accurately predict

efficient guides, we asked whether these models could help us

understand the features contributing to guide efficiency by using

various model interpretation methods. We first used integrated

gradients (IG)27 to provide observability for our CNN model.

We began with the guide sequence preferences learned by the

model, and IG analysis on each position in the guide spacer

sequence nominated a core region of position 15–24 as a major

contributor to guide efficiency (Figure 2A). Consistent with our

original correlation analysis (Figure S2A), IG analysis on each po-

sitional nucleotide in the guide sequence revealed a clear prefer-

ence for an alternating stretch of guanines, cytosines, and gua-

nines (G15–18C19–22G23–24) in this core region (Figure 2B).

To confirm the favored sequence features across models and

model interpretation methods, we further applied Shapley addi-

tive explanations (SHAP), a game theoretic approach,28 to our

GBT model, and a similar sequence preference in the same

core region was observed (Figures S3D and S3E). In contrast,

this unique sequence preference was not found for Cas13a

when we performed a correlational analysis of available data-

sets6,29 (Figures S4A–S4C). Indeed, no consistent sequence

preference or core region emerged across the Cas13a datasets

analyzed, which could be due to intrinsic enzymatic properties of

Cas13a or limitations in the size of available datasets.

As our IG and SHAP analyses investigated each position in the

guide sequence independently, we further sought to determine

the role of specific motifs (nucleotide combinations) in guide
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Figure 2. Deep learning model interpretation reveals favored sequence motifs and secondary features of high efficiency guides
(A) Evaluation of the importance of each position in the guide spacer sequence in the CNN model using integrated gradients (IG). Absolute integrated gradient

values of each position across all test set guides were shown as a box-and-whisker plot. Higher absolute gradient values indicate greater importance for

predicting a high efficiency guide. The gray box highlights the identified core region (position 15–24).

(B) Evaluation of the importance of each positional nucleotide in the spacer region of the guide sequence in the CNN model by IG.

(C) Top 5 sequence patterns identified by transcription factor motif discovery from importance scores (TF-MoDISco) in the CNNmodel. Patterns are positioned on

the 30 nt spacer according to the mode position of the seqlets (sequence regions with high importance based on IG scores) in each pattern (Figure S4D).

(D) Fraction of high efficiency guides that contain the 10-base motif shown in (B) and A/T substitutions within the 10-base motif.

(E) Fraction of high efficiency guides across different core region GC content. Guides were divided into eleven bins based on the GC content in their core region

(position 15–24), and the fraction of high efficiency guides in each bin is plotted.

(F) Contribution of target transcript region (50 UTR, CDS, or 30 UTR) to guide efficiency in the CNN model. The bar plots indicate average IGs of different target

position flags in all test samples.

(G) Contribution of relative position within each target transcript region to guide efficiency in the CNNmodel. The scatter plots indicate individual IG values against

individual input feature values across all test samples. The reference points are set to 0 for each transcript region.

(H) Contribution of predicted guide unfolding energy to guide efficiency in the CNN model. The reference point is set to 0.

(I) Contribution of predicted target unfolding energy to guide efficiency in the CNN model. The reference point is set to 0.
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efficiency. We employed transcription factor motif discovery

from importance scores (TF-MoDISco), an algorithm that iden-

tifies sequence patterns or motifs incorporated in deep learning

models by clustering important sequence segments based on

per-position importance scores.30 We discovered a total of 14

distinct sequence patterns associated with high-efficiency

guides from the CNN model, with the top 5 patterns shown in

Figure 2C. As TF-MoDISco was initially applied for the identifica-

tion of transcription factor binding motifs, it is designed to iden-
tify motifs in a position-independent manner. In our analysis, we

noticed that all identified patterns were anchored to specific po-

sitions centered around guide spacer nucleotides 18–20 (Fig-

ure S4D), consistent with our prior observation of a core region.

Strikingly, all top 5 sequence patterns contained a cytosine at

position 21, with a single guanine at varying positions in the core

region across the different patterns. Taken together, the identi-

fied motifs can be summarized as GNxC21 or NxC21G within

the core region. Generally, the patterns were sparse and
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characterized by just two dominant bases (one G and one C), in

contrast to the longer 10-base motif that the individual position-

level analysis would have suggested (Figures 2B and S3E).

Consistent with our results above, an analysis of enriched and

depleted 3-mers in high-efficiency guides across the spacer

sequence revealed that enriched 3-mers were again clustered

in the core region (position 15–24) (Figure S4E). In addition to

the consistent finding of a prominent enrichment of C at position

21, they revealed a preference for A or T intercalated with G and

C (Figures S4E and S4F), a finding that was obscured in the per-

position analysis. Analysis of enriched and depleted 4-mers in

high-efficiency guides also led to a similar finding (Figure S4G).

A/T substitutions within the 10-base motif (G15–18C19–22G23–24)

(Figure 2D) and analysis of the GC content in the core region

for high efficiency guides (Figure 2E) further confirmed a prefer-

ence for a medium GC content via A/T nucleotides at the N po-

sitions of the key GNxC21 or NxC21G motif.

Next, we used IG and SHAP to investigate the contribution of

secondary features in the CNN and GBT models. IGs revealed

that targeting the beginning of the 50 UTR and the end of the 30

UTR was the most disfavored, whereas targeting the coding re-

gion (CDS) was generally favored, with a slight preference for the

beginning of the CDS (Figures 2F and 2G). In agreement with our

correlation analysis, guide and target unfolding energy also had a

relatively high impact on guide efficiency, with lower unfolding

energy favored by high-efficiency guides (Figures 2H and 2I).

SHAP analysis on our GBT model showed a consistent direction

of feature contribution to guide efficiency (Figure S3F) and

ranked spacer sequence composition as the most important

feature.

Taken together, our systematic model interpretation was

consistent across models and analysis approaches, was able

to rank features by their contribution toward guide classification,

and significantly expanded our understanding of preferred

longer-range sequence motifs that were missed by simpler

correlational analyses.

Systematic validation of the guide efficiency model
across 5 cell types with endogenous protein knockdown
Next, we sought to experimentally validate our model through

CasRx-mediated knockdown of cell-surface markers, reasoning

that an orthogonal readout to transcript essentiality and cell sur-

vival would ensure generalizability of our model predictions to

multiple readout modalities. To this end, we performed a screen

using a library of 3,218 guides tiling the transcripts of two cell-

surface markers,CD58 andCD81, with single-nucleotide resolu-

tion. 10 days after lentiviral transduction of the guide library, cells

were FACS-sorted into 4 bins on the basis of target protein

expression level (Figure 3A), and the enrichment of individual

guides in the top and bottom bins (exhibiting the greatest or least

magnitude of knockdown, respectively) was assessed. We

observed clear separation of the most efficient targeting guides

from the non-targeting guides based on the enrichment ratio,

with zero non-targeting guides appearing in the top 20th percen-

tile of guide efficiency (Figure 3B).

We evaluated our CNN model’s performance on this new da-

taset and found that an ensemble CNN model comprising

models from all 9-fold splits of the survival screen data outper-

formed each individual model (Figure S5A) and achieved high
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prediction accuracy for both CD58 (an AUROC of 0.88 and an

AUPRC of 0.66) and CD81 (an AUROC of 0.86 and an AUPRC

of 0.62) (Figure 3C). This performance is comparable with the

model accuracy on held-out essential transcripts from our initial

screen (Figure 1F), highlighting its generalizability. Compared

with two existing Cas13d guide design models,15,18 our model

showed the highest AUROC, AUPRC, and Spearman correla-

tion. Importantly, we showed that at a 0.9 score cutoff, ourmodel

exhibited a very high true positive ratio of 0.93 and 0.9 for CD58

andCD81, respectively, in contrast to the Wessels et al. model15

(0.52 for bothCD58 andCD81) and DeepCas1318 (0.38 forCD58

and 0.35 for CD81) (Figure 3C). The far higher true positive ratio

at high score cutoffs underlines the superior utility of our model

for key applications such as predicting the top 3–10 guides per

target transcript in individual targeting or library-based screening

approaches. Illustrating this use case, we examined the true

percentile rank of the top 10 predicted high-efficiency guides

for CD58 and CD81, showing that 10/10 guides for CD58 and

9/10 for CD81 were highly effective (Figure 3D).

To assess generalizability to other cell types, we evaluated our

model’s performance on a published CasRx guide tiling dataset

(�3,000 guides in HEK293FT cells from the Wessels et al.

training dataset). Our model showed high AUROC (0.85, 0.88,

and 0.85 for CD46, CD55, and CD71, respectively), AUPRC

(0.59, 0.59, and 0.67), Spearman correlation (0.67, 0.69, and

0.66), and true positive ratio (0.76, 0.9, and 0.94 at a 0.9 score

cutoff) (Figure 3E). Among the top 10 predicted high-efficiency

guides, 90% were highly efficient (falling into the top 20%

percentile of efficient guides) (Figure 3F). When compared

against the Wessels et al. model on opposing datasets (Fig-

ure S5B), ourmodel showed significantly higher prediction accu-

racy using all evaluation metrics (AUPRC: 0.617 vs. 0.379;

Spearman correlation rs: 0.675 vs. 0.391; AUROC: 0.873 vs.

0.733; true positive ratio [0.9 cutoff]: 87% vs. 51%), further sup-

porting the generalizability and high performance of our model.

As a final test of the ability of our model to predict efficient

guides for knockdown of desired transcripts in different cell

types, we selected 5 top-scoring guides and 5 low-scoring

guides (excluding the very bottom of our ranking) for two

different transcripts (CD59 and CD146) and tested the knock-

down efficiency of each guide in HeLa, U2OS, and A375 cells

(Figure 3G). Across all three cell lines, the top-scoring guides

showed very efficient target knockdown (72%–98% with a me-

dian of 90%), whereas the low-scoring guides showed variable

and significantly lower levels of knockdown (6%–70%with ame-

dian of 35%), confirming the utility and generalizability of our

model across 5 cell types (K562, HEK293FT, HeLa, U2OS,

and A375).

Discovery of DjCas13d, a high-efficiency RNA-targeting
enzyme with minimal cellular toxicity in human cells
In genome engineering, two of the most important features are

efficiency and specificity. A key emerging limitation of several

Cas13 systems is the induction, in certain contexts, of cellular

toxicity by their RNA trans-cleavage activity,20–22 hampering

their application as a generalizable transcriptome engineering

tool. In the context of this study, we also observed various de-

grees of cellular toxicity for CasRx when paired with highly effi-

cient guides in the A375 cell line (Figure S6A).
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Figure 3. Systematic validation of the guide efficiency model across 5 cell types with endogenous protein knockdown

(A) Schematic of the pooled CasRx guide tiling screen targeting CD58 orCD81 transcripts in K562 cells followed by flow cytometry-based readout of cell-surface

CD58 or CD81 protein abundance.

(B) Cumulative distribution of guide enrichment ratios for CD58, CD81, and non-targeting guide categories, calculated as the ratio of guide percentage in bin 1

(greatest knockdown) relative to the sum in bin 1 and bin 4 (least knockdown). Red dashed lines indicate the ratio for the top 20th percentile of targeting guides.

(C) Model comparison onCD58 andCD81 guides. CNN, the ensemble CNNmodel built on the survival screen data in this work; Wessels et al. model, a previously

published CasRx random forest-based guide efficiencymodel15; DeepCas13, a previously publishedCasRx deep learning-basedmodel.18Model performance is

evaluated by AUROC, AUPRC, Spearman’s correlation coefficient (rs), and true positive ratio at 0.8 and 0.9 model score cutoffs across guides targeting CD58

(left) and CD81 (right).

(D) True percentile rank of the top 10 predicted high efficiency guides forCD58 andCD81. The red dashed line indicates the top 20th percentile ofCD58- orCD81-

targeting guides.

(E) Performance of the ensemble CNN model on a published CasRx guide tiling dataset of three CD transcripts (CD46, CD55, and CD71) in HEK293FT cells.15

Model AUROC, AUPRC, Spearman’s correlation coefficient (rs), and true positive ratio at 0.8 and 0.9 model score cutoffs are shown for each transcript.

(F) True percentile rank of the top 10 predicted guides by our model for three transcripts in a published CasRx guide tiling dataset in HEK293FT cells.15 The red

dashed lines indicate the top 20th percentile of targeting guides.

(G) Knockdown efficiency of the predicted 5 top-scoring guides and 5 low-scoring guides for two transcripts (CD59 and CD146) measured by flow cytometry in

HeLa, U2OS, and A375 cells. Heat map color indicates the mean knockdown efficiency for each guide across n = 3 biological replicates. The top-scoring guides

and low-scoring guides were significantly different at p < 0.0001 for HeLa, U2OS, and A375 cells based on Welch’s t test.
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Figure 4. Discovery of DjCas13d, a high-efficiency RNA-targeting enzyme with minimal cellular toxicity in human cells

(A) Phylogenetic tree of Cas13 enzymes including the expanded Cas13d subtype clade (yellow). 46 additional Cas13d orthologs were identified throughmining of

recent metagenomic datasets. The 7 previously identified Cas13d orthologs including CasRx (red) are shown in bold text. The newly discovered ortholog

DjCas13d is shown in blue. All the ortholog sequences are provided in Table S7.

(B) Evaluation of the knockdown efficiency of all Cas13d orthologs shown in (A) on an mCherry reporter transcript in HEK293FT. Horizontal green dashed line

denotes our selected cutoff of >55% knockdown efficiency; the hits are color-coded for further study. Individual data points are shown with mean values ± SEM

for n = 3 replicates.

(C) Evaluation of the knockdown efficiency of the selected 14 Cas13d orthologs on an endogenous transcript, CD81, as measured by flow cytometry-based

readout of protein abundance. The horizontal green dashed line denotes a 50% knockdown efficiency cutoff. Cas13d enzymes are plotted in order of their protein

size on the x axis (small to large). Individual data points are shown with mean values ± SEM for n = 2 replicates.

(D and E) Evaluation of cell viability (D) and knockdown efficiency (E) of cells expressing each of the top seven most efficient Cas13d orthologs in H1 hESCs along

with a CD81-targeting guide. The horizontal green dashed line in (E) denotes an 80% knockdown efficiency cutoff. Orthologs are ordered by their size and color-

coded as in (C). Individual data points are shown with mean values ± SEM for n = 3 replicates.

(F) Evaluation of cellular viability (y axis) and knockdown efficiency (x axis) of DjCas13d and CasRx across three transcripts in the hESC line, H1. Three top guides

were picked for each transcript based on the CNNmodel score. Each dot on the scatter plot represents one guide’s survival rate and knockdown efficiency (mean

for n = 3 replicates). The dots are colored by the effector used (CasRx, red; DjCas13d, blue), and the color gradients denote the expression level of the target

transcript relative to GAPDH (log2 relative expression) in the hESC line H1 based on qPCR. The dashed box denotes guides with >80% survival rate and >60%

knockdown. 89% of DjCas13d guides are within the box while only 11% of CasRx guides are within the box.

(legend continued on next page)
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To address this, we reasoned that the evolutionary diversity of

Cas13d enzymesmay have already developed solutions to these

challenges. To develop a more broadly useful transcriptome en-

gineering tool, we sought to identify a Cas13d ortholog that com-

bines the key positive traits of CasRx, like its small size and high

targeting efficiency, with low cellular toxicity. We applied our

previously described computational approach for Cas13d dis-

covery7 to an expanded database of metagenomic datasets

and discovered 46 previously uncharacterized Cas13d enzymes,

expanding the known Cas13d family from 7 to 53 members (Fig-

ure 4A; Table S7).

To evaluate these novel Cas13d enzymes for mammalian tran-

script knockdown, we synthesized human codon-optimized

constructs of each enzyme with nuclear localization sequence

(NLS) and nuclear export sequence (NES) fusions and measured

their ability to knockdown the mCherry reporter transcript using

a matched guide array containing twomCherry targeting guides.

We identified 14 enzymes exhibiting >55% knockdown effi-

ciency (Figure 4B) in this reporter assay. Because reporter

knockdown is often weakly predictive of Cas13 performance

on endogenous targets, we further tested the 14 orthologs on

our shortlist for their knockdown efficiency when targeting the

endogenous CD81 transcript. With this more stringent test, 7 or-

thologs exhibited >50% knockdown efficiency (Figure 4C), and

we focused on these for further characterization.

Having identified this shortlist of the most efficient Cas13d en-

zymes, we next evaluated their cytotoxic effects in hESCs, a sen-

sitive cell type where we previously observed issues with CasRx.

When targeting the non-essential transcript CD81 in this highly

sensitive cell type, we were able to observe a significant reduc-

tion in viable cells expressing CasRx and most of the other

Cas13d orthologs (Figure 4D), consistent with cytotoxic effects

on other sensitive cell types reported in the literature.20 Strik-

ingly, two of the orthologs we tested (DjCas13d and Ga_0531)

led to no detectable reduction of viable cell counts (Figure 4D).

Of those two, we chose DjCas13d for additional characteriza-

tion, given its high knockdown efficiency (>80% in hESCs) (Fig-

ure 4E) and unusually small size (877aa, compared with 967aa

for CasRx) (Figure 4C).

In a further evaluation across three guides each for three

transcripts in hESCs, DjCas13d showed no significant effects

on viable cell counts in contrast to CasRx, which caused

significantly reduced viable cell counts with eight out of

nine guides (Figure 4F). DjCas13d showed a high knockdown

efficiency of >70% for most guides tested (median of

71.5%)—efficiency that was comparable with CasRx (median

of 77.4%) (Figure 4F).
(G) Evaluation of cellular viability (y axis) and knockdown efficiency (x axis) of DjCas

in HEK293FT using the same spacer sequences. Three top guides were picked fo

represents one guide’s survival rate and knockdown efficiency (mean for n = 3 rep

Cas7–11, gray), and the color gradients denote the expression level (transcripts pe

denotes guideswith >80%survival rate and >60%knockdown. 84%of DjCas13d

are within the box.

(H) Knockdown efficiency of DjCas13d paired with 3 top-scoring guides and 3 low

expression levels in H1 hESCs. Heat map color indicates the mean extent of knoc

and low-scoring guides were significantly different at p < 0.0001 based on Welc

(I) Knockdown efficiency of DjCas13d paired with 5 top-scoring guides and 5 low

CD146) in Hela andU2OScells. Heatmap color indicates themean knockdown effi

guides and low-scoring guides were significantly different at p < 0.0001 in HeLa
DjCas13d induces minimal cellular toxicity when
targeting highly expressed transcripts
Recent work21,23 and our results in stem cells (Figure 4F) high-

lighted high target transcript abundance as a key variable for

Cas13-mediated cellular toxicity in addition to the importance

of cell type. In our own experiments in hESCs, we also

observed the lowest survival rate for CasRx when targeting

the most abundant transcript—CD24—whereas no such

impact was observed for DjCas13d (Figure 4F). In order to

further compare CasRx and DjCas13d under conditions known

to promote cellular toxicity, we targeted three previously

described highly expressed transcripts (ACTG1, HNRNPA2B1,

and FTH1)23 in HEK293FT cells and confirmed a significant

reduction in the number of viable cells when using CasRx but

not DjCas13d (Figure 4G, all guides significant at p < 0.0001).

We further targeted three medium- and three low-expression

transcripts, confirming that lower expression of the target tran-

script alleviated the toxicity induced by CasRx (Figure 4G),

consistent with initial reports.7 By contrast, we observed a min-

imal impact on viable cell counts when using DjCas13d to

target any of these transcripts (Figure 4G), despite comparable

knockdown efficiency of DjCas13d (knockdown median of

88%) with CasRx (median of 84%). We confirmed this result

in the U-87 cell line that is commonly used to assess collateral

activity of Cas13 enzymes: targeting transcripts with high and

medium expression levels resulted in 60%–90% cell survival

with CasRx, whereas DjCas13d showed no such survival defect

(96%–115%) (Figure S6B).

In the second head-to-head comparison, we tested DjCas13d

against the recently reported Cas7–11 enzyme, which does not

belong to the Cas13 family of CRISPR enzymes and was re-

ported to have no impact on cell viability due to its distinct

RNA cleavage mechanism.20,31 We demonstrate that both

DjCas13d and Cas7–11 have a comparably low impact on cell

viability and proliferation (90% median cell count for DjCas13d

across all targeting conditions, and 73% for Cas7–11) when tar-

geting the same medium- to highly expressed transcripts—in

stark contrast to CasRx (46% median cell count). However,

Cas7–11 suffered from diminished knockdown efficiency (me-

dian of 57%) compared with DjCas13d and CasRx (median of

88% and 84%, respectively) (Figure 4G).

Overall, we conclude that DjCas13d combines the best fea-

tures of CasRx and Cas7–11, exhibiting low cellular toxicity

and high knockdown efficiency. 84% of guides tested with

DjCas13d showed >80% survival rate and >60% knockdown,

whereas only 32% of CasRx guides and no Cas7–11 guides

met these cutoffs.
13d, CasRx, and Cas7–11 across nine transcripts of different expression levels

r each transcript based on the CNN model score. Each dot on the scatter plot

licates). The dots are colored by the effector used (CasRx, red; DjCas13d, blue;

r million [TPMs], log2(TPM+1)) of the target transcript. As in (F), the dashed box

guides arewithin the box, whereas 32%of CasRx guides and 0Cas7–11 guides

-scoring guides from the CNN model prediction on nine transcripts of different

kdown for each guide across n = 3 biological replicates. The top scoring guides

h’s t test.

-scoring guides from the CNN model prediction on two transcripts (CD59 and

ciency for each guide across n = 3 biological replicates. The sets of top-scoring

and p < 0.001 in U2OS based on Welch’s t test.
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DjCas13d guide activity can be accurately predicted
with our guide efficiency model
Given that DjCas13d belongs to the same subtype of CRISPR

effectors as CasRx, we next sought to test whether our

Cas13d guide design model could be successfully applied to

this new Cas13d ortholog. Encouragingly, our data in

Figures 4F and 4G demonstrated a high efficacy of knockdown

with guides recommended by the model when using DjCas13d

across 12 transcripts of different expression levels and in

different cell types. To further explicitly validate themodel perfor-

mance of DjCas13d, we selected a set of top- and low-scoring

guides for a total of eleven transcripts across a range of expres-

sion levels in hESCs, HeLa, and U2OS cell lines. Across hESCs

(Figure 4H), as well as HeLa and U2OS cells (Figure 4I), the pre-

dicted high-efficiency guides resulted in a significantly higher de-

gree of protein knockdown (median of 73.9%) compared with

low-scoring guides (median of 19.7%) (Figures 4H and 4I). Alto-

gether, these results demonstrate that our model generalizes to

the novel DjCas13d ortholog, resulting in reliable knockdown

performance and lack of apparent cellular toxicity even in sensi-

tive cell types and for highly abundant transcripts. Given that the

sequence divergence between DjCas13d and CasRx (29.9%

sequence identity) is similar to the divergence between other

Cas13d orthologs from our new metagenomic mining (�29.4%

pairwise sequence identity on average), we expect that our guide

design model may generalize to other Cas13d effectors as well.

DjCas13d exhibits high transcriptome-wide specificity
The context-dependent cellular toxicity mediated by many

Cas13 enzymes is hypothesized to result from collateral cleav-

age of bystander transcripts.20–23 This is consistent with the

observation that cellular viability and proliferation are more

noticeably impacted when targeting more abundant tran-

scripts—which would result in a larger number of activated

Cas13 enzymes per cell and therefore more potential collateral

RNA cleavage.

To investigate this hypothesis and compare the collateral and

off-target effects between CasRx and DjCas13d, we performed

RNA-seq 2 days after CasRx or DjCas13d-mediated knockdown

of CD81 (307 transcripts per million [TPM]), FTH1 (1,219 TPM),

and ACTG1 (3,728 TPM) in HEK293FT cells (Figure 5A). Our tran-

scriptome-wide analysis revealed significantly more non-target

transcripts affected by CasRx when targeting more highly ex-

pressed transcripts (ACTG1 > FTH1 > CD81), indicating greater

levels of collateral or off-target effects (Figure 5A). In contrast, we

observedminimal transcriptome-wide perturbation by DjCas13d

apart from knockdown of the intended target transcript, with the

exception of ACTG1 guide 2 that exhibited 701 off-targets—still

much lower than the 1,151 off-targets induced byCasRxwith the

same guide (Figure 5A).

Next, we extended our RNA-seq analysis to assess the conse-

quences of CasRx and DjCas13d in more sensitive hESC cells

when targeting genes with high (CD24), medium (CD81), or low

(TFRC) expression levels. CasRx-mediated knockdown of

high- and medium-expressed genes resulted in rampant loss

of cell viability, making transcriptome analysis impossible in

many samples. Consistent with the high survival of sensitive

cell types following DjCas13d treatment above, this toxicity

was not observed for DjCas13d targeting the same transcripts.
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Similar to the HEK293FT RNA-seq above, we observed a signif-

icant reduction in off-target transcriptome perturbations when

using DjCas13d (0 off-targets for most guides tested, with a

modest 7 and 103 off-targets for the two guides targeting

CD24) compared with CasRx (hundreds of off-targets even

when targeting low- and medium-expression transcripts, and

rampant cellular toxicity when targeting highly expressed tran-

scripts) (Figure 5B).

Importantly, to rule out transcriptome-wide depletion that

would be difficult to detect via differential RNA-seq, we used

defined concentrations of exogenous RNA spike-ins to assess

total RNA amount per cell. Although CasRx showed a significant

decrease in total RNA abundance across guides targetingCD71,

DjCas13d did not display significant global RNA depletion with

any guide/target tested, consistent with its low off-targets and

low toxicity (Figure S6C). As an additional measure of transcrip-

tome integrity, we visualized total RNA extracted from these

samples and found that although RNA integrity for DjCas13d

was intact, CasRx targeting resulted in the appearance of an

additional band between the 28S and 18S bands for all targeting

guides (Figure S6D), which has also been noted by other

groups.23

To distinguish between guide-specific off-target effects and

universal sequence-indiscriminate collateral effects in our

CasRx datasets, we analyzed the overlap between up- and

down-regulated transcripts among different guides, targets,

and cell types (Figures S6E–S6H). We found a meaningful over-

lap between the significantly upregulated transcripts across

different CasRx conditions, with enrichment of the unfolded

protein response signaling pathway, suggesting that CasRx-

mediated non-target-specific collateral activity may stimulate

generalized cellular stress responses. For DjCas13d, we focused

on the three guides showing the highest number of off-targets

(ACTG1-g2, CD24-g5, and CD24-g6). In order to distinguish po-

tential direct guide-specified off-targets, we set a threshold of 7

mismatches with the 30nt spacer sequence and only identified 1

match in the perturbed transcripts for both CD24-g1 and

ACTG1-g2. This suggests that most non-target RNA perturba-

tion was likely either due to downstream effects of direct off-tar-

gets, or direct or indirect effects of residual collateral (non-spe-

cific) RNA cleavage. In addition, for DjCas13d, we did not

observe the same level of overlap in off-target RNA perturbation

across guides and target transcripts, suggesting that DjCas13d

does not induce noticeable overarching guide- and target-inde-

pendent effects in cells, even when a modest number of non-

target transcripts are perturbed.

DjCas13d is an effective tool for transcript knockdown
in many sensitive cell types
Given the promise of DjCas13d as a high-fidelity and low-toxicity

RNA targeting tool, we sought to apply DjCas13d to RNA target-

ing in sensitive biological processes and therapeutically relevant

cell types. Our demonstration of CasRx toxicity in hESC cells led

us to assess DjCas13d knockdown in the context of hESC differ-

entiation into neuronal progenitor cells (NPCs), hematopoietic

progenitor cells (HPCs), and neurons. DjCas13d was delivered

via an inducible PiggyBac system at the stem cell stage and

induced during differentiation. In NPCs, we targeted five tran-

scripts including highly expressed genes like BSG and THY1
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Figure 5. DjCas13d exhibits high transcriptome-wide specificity

(A) Volcano plots of differential transcript levels between targeting guide conditions and non-targeting (NT) guide control for CasRx (top) and DjCas13d (bottom) in

HEK293FT cells using two top-scoring guides for each target transcript (CD81 [medium expression level], FTH1 [high expression level], and ACTG1 [high

expression level]). Red dots denote significantly affected transcripts with adjusted p value < 0.1 and absolute beta value > 0.5. Green dots denote target transcript

isoforms, with darker green dots denoting the most abundant target transcript isoform, and lighter green dots denoting other significantly changed target

transcript isoforms; n = 3 biological replicates.

(B) Volcano plots of differential transcript levels between targeting guide conditions and non-targeting (NT) guide control for CasRx (top) and DjCas13d (bottom) in

hESC (H1) cells with two top-scoring guides for each target transcript (TFRC [low expression],CD81 [medium expression], andCD24 [high expression]). Red dots

denote significantly affected transcripts with adjusted p value < 0.1 and absolute beta value > 0.5. Green dots denote target transcript isoforms, with darker green

dots denoting the most abundant target transcript isoform, and lighter green dots denoting other significantly changed target transcript isoforms; n = 3 biological

replicates.
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and lower expressed transcripts such as CD46 with one or two

top-scoring guides per gene. We observed high cellular survival

in all cases with no significant decrease relative to non-targeting

conditions and effective knockdown efficiencies in most cases,

with a median of 63% (Figure 6A). In HPCs, we observed

46%–69% knockdown of the target proteins CD81 and TRFC

in DjCas13d-expressing cells with no detectable survival defect

(Figure 6B). In both of these cases, we confirmed that the ex-

pected markers of differentiation efficiency were not affected

by DjCas13d targeting (SOX1 and PAX6 for NPC and CD43 for

HPC) (Figures S6I and S6J). Finally, we differentiated hESCs to
neurons using neurogenin-2 (Ngn2) directed differentiation and

assessed DjCas13d’s ability to knock down two proteins,

CD81 and CD24, with 3 top-scoring guides each. We observed

uniform knockdown of approximately 50% in all cases

(measured at the protein level via FACS), coupled with high cell

survival near 100% (median of 98%) (Figure 6C). Altogether,

these data illustrate the broad applicability of DjCas13d across

multiple target genes in sensitive cell types of high biological

and therapeutic interest.

To support the easy use of both DjCas13d and CasRx for RNA

targeting, we created a freely accessible portal to run our model
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Figure 6. DjCas13d enables toxicity-free RNA perturbation in various sensitive cell types

DjCas13d-mediated RNA targeting in (A): hESC-derived neuronal progenitor cells (NPCs); (B): hESC-derived hematopoietic progenitor cells (HPCs); and (C):

hESC-derived neurons. Left, schematic of the experimental workflow. Right, scatter plot of cellular viability (y axis) and knockdown efficiency (x axis) across five

transcripts of different expression levels in NPCs and two transcripts of different expression levels in HPCs and neurons. Each point on the scatter plot represents

one replicate of one guide’s survival rate and knockdown efficiency (n = 2 or 3 replicates). The points are colored by the target transcript listed in the legend. The

circle points represent guide 1 for the target transcripts; the diamond points represent guide 2 for the target transcripts; the triangle points represent guide 3 for

the target transcripts. The target transcripts are ranked by expression levels (high to low) in the legend. The black dashed line indicates a survival rate of 1.0

relative to the average of non-targeting (NT) guides, and the shaded box indicates the SEM of the survival rate for NT guides.
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for Cas13d guide prediction on all human and mouse transcripts

and custom target sequences. This community resource is avail-

able at http://RNAtargeting.org.

DISCUSSION

In this study, we applied CasRx for large-scale screening across

over 127,000 guides against 55 target transcripts in human cells,

a dataset that is >12 times larger than previous Cas13 guide

design studies.15,18 Using this dataset, we developed a highly

accurate, deep learning-based Cas13d guide efficiency model

to nominate highly efficient guides for transcripts of interest.

The model exhibits excellent performance across two screen

modalities, nine cell types, and two diverse Cas13d orthologs,

illustrating its generalizability for predicting highly effective

guides across different contexts. The major factors contributing

to our model’s generalizability include its primary reliance on the

guide RNA spacer sequence—a cell type-independent feature—
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as well as the 9-fold cross-validation of the model on non-over-

lapping sets of transcripts, which alleviates overfitting to target-

ing hotspots specific to certain transcripts.

Previous attempts to predict CRISPR guide efficiency have

primarily relied on manual selection of a limited set of guide

sequence features combined with simpler machine learning

models, such as ENs,26 SVM,32 or RF approaches.15 More

recently, deep learning models, which are able to learn complex,

high-order patterns and features automatically from raw data,

have been employed to predict guide efficiency for Cas9 activ-

ity,33–35 Cpf1,36 base editors,37,38 Cas13a,29 and Cas13d.18

Here, we directly compared two deep learning models with

linear and ensemble methods (ENs, RF, and GBTs) for guide ef-

ficiency prediction, finding that the deep learning model (CNN)

outperformed the other approaches. This illustrates the power

of deep learning models in sequence-based prediction tasks

due to their automatic feature selection and ability to identify mo-

tifs or long-range interactions, given a sufficiently large dataset

http://RNAtargeting.org
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(>100,000 guides). Furthermore, we show that our model signif-

icantly outperforms the current state-of-the-art models15,18

(Figures 3C and S5B).

Although deep learning models can extract important

higher order features automatically from raw inputs, the interpre-

tation of feature contributions is challenging. Prior deep

learning models for Cas933,35 and other sequence-based appli-

cations39–41 mainly employed neuron visualization methods to

unveil important motifs. These approaches are able to success-

fully identify patterns recognized by individual filters but can suf-

fer from redundancy of the identified motifs. Recently developed

interpretation methods, such as IG, SHAP, and TF-MoDISco,

can address these limitations and have begun to be applied to

identify consolidated and non-redundant motifs for transcription

factor binding.42 In this report, we evaluated feature importance

directly from the deep learning model using these new model

interpretation approaches. This allowed us to discover a core re-

gion at guide spacer position 15–24 with a specific sequence

composition predictive of high efficiency guides. Comprehen-

sive motif analysis revealed a preference for GW1–4C21 or

C21W0–2G motif. In contrast, analysis of base preference at indi-

vidual positions and correlation-based evaluation of feature

importance15 obscured this motif. This underscores the utility

of the combination of deep learning models that are able to learn

higher order sequence features along with advanced motif-dis-

covery approaches for model interpretation such as TF-

MoDISco used here—the first time, to our knowledge, that

such an approach has been applied to CRISPR guide activity

prediction models.

In addition to effective guide selection, cellular toxicity has

emerged as a significant challenge for Cas13 applications—ef-

fects likely mediated by off-target and/or collateral RNA cleav-

age.20–23 Initial reports developing diverse Cas13 effectors for

mammalian transcript knockdown demonstrated high specificity

and lack of apparent cellular toxicity in HEK293FT cells, plants,

and animal embryos.6–8,17,43 However, several recent studies

have reported marked cellular toxicity of these effectors in other

cell types or target contexts.20,22

Two recent studies aiming to reconcile these reports

concluded that collateral RNA cleavage by Cas13 enzymes is

correlated with the expression level of the target transcript and

that the effect on cellular toxicity is dependent on the cell

type,21,23 indicating that highly expressed transcripts and sensi-

tive cell types are prone to Cas13-mediated collateral cleavage

and toxicity. Our data comparing CasRx’s effect across cell

types and endogenous target RNAs with varying expression

levels support this conclusion. We reasoned that a higher degree

of CasRx RNase activation upon higher target transcript levels

would result in a greater amount of collateral RNA cleavage,

which in turn could activate cellular stress pathways and lead

to cellular toxicity.

To advance Cas13 applications in sensitive cell types and

therapeutic scenarios, our discovery of the DjCas13d ortholog

promises to address the current limitations of both CasRx

(context-dependent cellular toxicity) and Cas7–11 (efficiency

and size). DjCas13d exhibits minimal cellular toxicity even in

challenging conditions and achieves high efficiency and tran-

scriptome-wide targeting specificity against highly expressed

transcripts across various cell types. We further demonstrate
efficient and high-viability endogenous RNA targeting with

DjCas13d in hESC-derived NPCs, HPCs, and neurons. In this

study, we delivered inducible DjCas13d to hESCs through the

PiggyBac transposase and differentiated stem cells to multiple

cell types for target knockdown. This system was optimized to

target several differentiated human cell types efficiently in vitro.

However, given DjCas13d’s small size, future work should

explore adeno-associated virus (AAV) and other more therapeu-

tically relevant delivery platforms to deliver this effector to

various cell types for potential in vivo or clinical applications.

Taken together, DjCas13d paired with our state-of-the-art

Cas13d guide design model provides a comprehensive solution

for 3 key challenges in the RNA targeting toolbox by enabling

high efficiency, cell viability, and specificity. We further envision

that the deep learningmodel architecture, systematic feature en-

gineering, and model interpretation approach outlined in this

study will be broadly applicable to other sequence-based tasks,

such as the prediction of guide RNA activities for newly discov-

ered CRISPR enzymes, DNA/RNA modifications, and DNA/

RNA-protein interactions.

LIMITATIONS OF THE STUDY

One limitation of our work is that our screen and the resulting

model are specifically focused on predicting the on-target effi-

ciency of Cas13d and do not currently take into account the

off-target potential of any given guide transcriptome-wide. Dur-

ing the final stages of consideration of our manuscript, other

groups examined the off-target rules of CasRx using large-scale

screens and computational models, filling this gap.18,44 Howev-

er, any specific off-target predictive features for DjCas13d still

remain unclear and will require future investigation. Another re-

maining question is whether the occasional reduction in knock-

down efficiency with DjCas13d relative to CasRx among top

guides selected by our model is due to inherent differences be-

tween CasRx and DjCas13d. A smaller scale tiling screen using

DjCas13d might help elucidate any ortholog-specific guide

design principles that could further improve model performance.

A deeper investigation into the mechanistic underpinnings of

DjCas13d’s reduced cellular toxicity and off-targets in cells is

beyond the scope of this manuscript but will be informative for

future development of this effector, including opportunities for

further improvements via protein engineering. Although a major

part of our claims in this manuscript stems from the superior

specificity of DjCas13d in comparison with CasRx, we do

acknowledge the presence of off-target or collateral RNA pertur-

bations in some contexts. In summary, we believe that DjCas13d

represents a significant improvement over existing Cas13 RNA

targeting systems and that it will benefit from further study and

refinement.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD81 BD Biosciences Cat #561958; RRID: AB_398491

CD58 BD Biosciences Cat #564363; RRID: AB_2738769

Pax6 BD Biosciences Cat #561664; RRID: AB_10895587

Sox1 BD Biosciences Cat #561592; RRID: AB_10714631

CD43 BD Biosciences Cat #562916; RRID: AB_2737890

CD46 BD Biosciences Cat #564253; RRID: AB_2738705

CD55 BD Biosciences Cat #555696; RRID: AB_398609

CD71 BD Biosciences Cat #566724; RRID: AB_2869830

CD59 BD Biosciences Cat #565982; RRID: AB_2738750

CD146 BD Biosciences Cat #563619; RRID: AB_2738323

CD24 BD Biosciences Cat #561644; RRID: AB_10894010

BSG (CD147) BD Biosciences Cat #562551; RRID: AB_2737647

Thy1 (CD90) BD Biosciences Cat #562556; RRID: AB_2737651

CD9 BD Biosciences Cat #743047; RRID: AB_2741243

CD151 BD Biosciences Cat #742922; RRID: AB_2741150

CD47 BD Biosciences Cat #561249; RRID: AB_10611568

Bacterial and virus strains

Endura electrocompetent E. coli Lucigen Cat #60242-2

Stbl3� Chemically Competent E. coli Invitrogen� Cat #C737303

Chemicals, peptides, and recombinant proteins

NEBNext High Fidelity PCR Master Mix NEB Cat #M0541L

Macherey-Nagel NucleoBond Xtra Maxi

EF Kit

Macherey-Nagel Cat #740424.10

TrypLE Gibco Cat #12563-029

Lipofectamine 2000 Thermo Fisher Cat #11668027

PLUS reagent Thermo Fisher Cat #11514015

GlutaMAX� supplement Thermo Fisher Cat #61870036

Lipofectamine 3000 Transfection Reagent Thermo Fisher Cat #L3000001

Blasticidin S Thermo Fisher Cat #A1113903

Zymo Research Quick-gDNA MidiPrep Zymo Research Cat #D4075

Qubit dsDNA HS Assay Kit Thermo Fisher Cat #Q32851

McCoy’s 5A (modified) Medium Thermo Fisher Cat #11668027

mTeSR� Plus media STEMCELL Technologies Cat #100-0276

ReLeSR� STEMCELL Technologies Cat #05872

Doxycycline Sigma Cat #D3072

ViaFect� Transfection Reagent Promega Cat #E4981

TransIT-X2 Mirus Cat #MIR 6003

Accutase Innovative Cell Technologies Cat #00-4555-56

ROCK inhibitor, Y-27632 Abcam Cat #

FuGENE� HD Transfection Reagent Promega Cat #E2311

Cultrex R&D Systems Cat #343400502

RNeasy Plus 96 Kit QIAGEN Cat #74192

RevertAid RT Kit Thermo Fisher Cat #K1691

Taqman Fast Advanced Master Mix Thermo Fisher Cat #4444965

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GAPDH Taqman probe Thermo Fisher Cat #4326317E

WST-1 reagent Sigma Cat #5015944001

NEBNext II Ultra Directional RNA Library

Prep Kit

NEB Cat #E7760L

NEBNext Poly(A) mRNA Magnetic Isolation

Module

NEB Cat #E7490

ERCC RNA Spike-In Mix ThermoFisher Cat #4456740

AraC Sigma Aldrich Cat #C1768

N-acetyl cysteine Sigma Cat #A9165

B27 with vitamin A Gibco Cat #17504044

dbCAMP Sigma Aldrich Cat #D0627

HEPES Gibco Cat #15630130

Neurobasal Media Gibco Cat #21103049

Accumax Innovative Cell Technologies Cat #AM-105

BDNF Sigma Cat #B3795

Sodium selenite Sigma Cat #S5261

Progesterone Sigma Cat #P8783

Putrescine Sigma Cat #P57800

Apo-transferrin Sigma Cat #T1147

BSA Sigma Cat #A4161

Insulin Roche Cat #11376497001

Laminin Sigma Cat #L4544

Polybrene Santa Cruz Biotechnology Cat #sc-134220

STEMdiff Hematopoietic Supplement B StemCell Technologies Cat #05313

STEMdiff Hematopoietic Supplement A StemCell Technologies Cat #05312

STEMdiff Hematopoietic Basal Media StemCell Technologies Cat #05311

XAV-939 Abcam Cat #ab120897

A83-01 Sigma Cat #SML0788

LDN-193189 Sigma Cat #SML0559

AZD-4547 Abcam Cat #ab216311

bFGF Corning Cat #354060

B27 without vitamin A Thermo Fisher Cat #12587010

N2 Thermo Fisher Cat #A1370701

G418 Sulfate Thermo Fisher Cat #10131035

Puromycin Life Technologies Cat #A1113803

Matrigel Corning Cat #356252

Deposited data

LwaCas13a knockdown data Abudayyeh et al.6 N/A

LwaCas13a ADAPT dataset Metsky et al.29 N/A

Wessels et al. model Wessels et al.15 N/A

DeepCas13 Cheng et al.18 N/A

CasRx survival screen raw data This study Table S3

processed CasRx survival screen data This study Table S4

processed CasRx validation screen data This study Table S5

Cas13d ortholog sequences. This study Table S7

Raw data for individual guide knockdown

efficiency and survival rate.

This study Table S8

Experimental models: Cell lines

HEK293FT Thermo Fisher Cat #R70007

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

K562 cells ATCC Cat #CCL-243

HeLa Gift from the Howard Chang lab N/A

A375 Gift from the Scott Dixon lab N/A

U2OS Gift from the Howard Chang lab N/A

U-87 MG ATCC Cat #HTB-14

Stem cell line H1 WiCell Cat #WA01

Oligonucleotides

Oligos and primers This study Table S1

Individual guide sequences This study Table S6

Recombinant DNA

psPAX2 Didier Trono lab Addgene 12260

pMD2.G Dider Trono lab Addgene 12259

pXR001: EF1a-CasRx-2A-EGFP Konermann et al.7 Addgene 109049

pXR003: CasRx gRNA cloning backbone Konermann et al.7 Addgene 109053

pDF0159 pCMV - huDisCas7-11

mammalian expression

Özcan et al.20 Addgene 172507

pDF0114 pU6-Eco31i-Eco31i-DisCas7-11

mature DR guide scaffold with golden

gate site

Özcan et al.20 Addgene 172508

PB_EF1a-CasRx-msfGFP-2A-Blast This study N/A

hU6-(CasRx DR)-EF1a-Puro-WPRE This study N/A

hU6-(CasRx DR)-TRE-CasRx-msfGFP-

EF1a-rtTA-2A-Puro-CMV-transposase

This study N/A

hU6-DR-TRE-Cas13d-T2A-msfGFP-EF1a-

rtTA-T2A-Puro-CMV-transposase

This study N/A

Software and algorithms

BLAST NCBI https://blast.ncbi.nlm.nih.gov/Blast.cgi

LinearFold Huang et al.45 https://github.com/LinearFold/LinearFold

Arnie Wayment-Steele et al.46 https://github.com/DasLab/arnie

scikit-learn 0.24 Pedregosa et al.47 N/A

TensorFlow 2.3.1 Abadi et al.48 N/A

Boruta Kursa et al.49 N/A

BorutaPy https://github.com/scikit-learn-contrib/

boruta_py

Integrated Gradients Sundararajanet al.27 N/A

SHAP (SHapley Additive exPlanations) Lundberg et al.28 https://github.com/slundberg/shap

TF-MoDISco Shrikumar et al.30 https://github.com/kundajelab/tfmodisco

Wessels et al. model Wessels et al.15 https://cas13design.nygenome.org

DeepCas13 Cheng et al.18 http://deepcas13.weililab.org

Cas13d guide efficiency prediction tool This study https://www.rnatargeting.org/

PhyML 3.2 Guindon et al.50 N/A

mmseqs package Steinegger and Söding51 N/A

MAFFT algorithm mafft-linsi Katoh et al.52 N/A

ggtree package (R) Yu53 N/A

Kallisto Bray et al.54 N/A

Sleuth Pimentel et al.55 N/A

Enrichr Chen et al.56; Kuleshov

et al.57; Xie et al.58
N/A

Source code from this study This study https://doi.org/10.5281/zenodo.10020412
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Silvana

Konermann (silvana@arcinstitute.org).

Materials availability
Key plasmids generated in this study will be deposited to Addgene after publication; until then, and for all other unique reagents,

access will be provided by request to the lead contact and completion of a materials transfer agreement.

Data and code availability
d The CasRx survival screen raw data is provided in Table S3. The processed CasRx survival screen data for essential gene

guides is provided in Table S4. The processed CasRx validation screen data is provided in Table S5. The RNA-seq data is avail-

able at the NCBI Sequence Read Archive (SRA): PRJNA857683 (for HEK293FT) and PRJNA1001509 (for H1). Accession

numbers are listed in the key resources table.

d All original code has been deposited at [https://doi.org/10.5281/zenodo.10020412] and is publicly available. DOIs are listed in

the key resources table. The model is freely accessible at http://RNAtargeting.org.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture of human lymphoblast cell line K-562
Human lymphoblast (female, ATCC (CCL-243)) cell line K-562wasmaintained in RPMI 1640medium supplementedwith GlutaMAX�
(Thermo Fisher, catalog no.61870036), 10% FBS, and Penicillin-Streptomycin at 37�C with 5% CO2. This cell line was purchased

directly from the manufacturer and was not otherwise authenticated.

Cell culture of Human Embryonic Kidney (HEK) cell line 293FT
Human embryonic kidney (HEK) cell line 293FT (female, Thermo Fisher (Cat # R70007)) was maintained in DMEM (4.5 g/L glucose),

supplemented with 10% FBS at 37�C with 5% CO2. Upon reaching 80%-90% confluency, cells were dissociated using TrypLE

(Gibco) and passaged at a ratio of 1:2. This cell line was purchased directly from the manufacturer and was not otherwise

authenticated.

Cell culture of human cervical carcinoma (HeLa) and human melanoma (A375) cell lines
Human cervical carcinoma HeLa (female) and human melanoma A375 (female) cell lines were gifts from the Howard Chang lab and

Scott Dixon lab, respectively. Both cell lines were maintained in DMEM supplemented with 10% FBS at 37�C with 5% CO2. Upon

reaching 80% confluency, cells were dissociated using TrypLE (Gibco) and passaged at a ratio of 1:2.

Cell culture of human bone osteosarcoma epithelial cell line U2OS
Human bone osteosarcoma epithelial U2OS (female) cell line was a gift from the Howard Chang lab and maintained in McCoy’s 5A

(modified) Medium (Thermo Fisher, catalog no. 11668027) supplemented with 10% FBS at 37 �C with 5% CO2. Upon reaching 80%

confluency, cells were dissociated using TrypLE (Gibco) and passaged at a ratio of 1:2.

Cell culture of human glioblastoma cell line U-87 MG
Human glioblastoma (female, ATCC (Cat #HTB-14)) cell line was maintained in Eagle’s Minimum Essential Medium (EMEM) (ATCC,

catalog no. 30-2003) supplemented with 10% FBS at 37 �C with 5% CO2. Upon reaching 80% confluency, cells were dissociated

using TrypLE (Gibco) and passaged at a ratio of 1:2.

Cell culture of human embryonic stem cell line H1
Human embryonic stem cell line H1 (male, WiCell (Cat # WA01)) was maintained in mTeSR� Plus media (STEMCELL Technologies)

on Matrigel-coated (Corning, catalog no. 356252) 6-well plates. Every four days, cells were dissociated using ReLeSR� (STEMCELL

Technologies) and passaged at a ratio of 1:12.

Stem cell differentiation to NPC, HPC, and neurons
Please refer to the last section of method details (Stem cell differentiation to NPC, HPC, neurons and RNA targeting experiments) for

detailed information regarding the differentiation protocol for H1 to produce NPC, HPC, and neurons.
e4 Cell Systems 14, 1087–1102.e1–e13, December 20, 2023
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METHOD DETAILS

Plasmid design
For the CasRx expression vector, we designed a piggyBac-based all-in-one plasmid containing the CasRx effector, piggyBac

transposase, and antibiotic selection cassette: PB_EF1a-CasRx-msfGFP-2A-Blast. The CasRx effector is fused to msfGFP at the

C terminus and under the control of a constitutive EF1a promoter. A nuclear localization signal SV40 NLS was added to both the

N and C terminus of CasRx-msfGFP. The antibiotic selection cassette, blasticidin S deaminase, is linked with CasRx-msfGFP via

a P2A self-cleaving peptide.

For the CasRx guide cloning vector, we designed a lentiviral vector: hU6-(CasRx DR)-EF1a-Puro-WPRE. The CasRx DR is a

36-base direct repeat (CAAGTAAACCCCTACCAACTGGTCGGGGTTTGAAAC) for CasRx pre-gRNA.7 The 30 nt guide spacer

sequence is cloned into the vector through Gibson cloning using two BsmBI cleavage sites. For individual guide truncation and in-

dividual guide validation experiments, we designed a piggyBac-based all-in-one plasmid containing the CasRx effector, guide DR,

piggyBac transposase, and antibiotic selection cassette: hU6-(CasRx DR)-TRE-CasRx-msfGFP-EF1a-rtTA-2A-Puro-CMV-

transposase.

Guide library design
For the survival screen, we selected 55 essential genes from the intersection of the essential hits in three previous survival screens

performed in K562 cells.24–26We selected themajor transcript isoform of these genes from theRefseq database and designed guides

that tile these transcripts with single nucleotide resolution. A total of 127,071 targeting guides were generated for the 55 essential

transcripts. In addition, we designed 14,111 guides tiling 5 non-essential control transcripts (CTCFL, SAGE1, TLX1, DTX2,

OR2C3). Along with 3,563 non-targeting guides, we constructed a pooled library of 144745 guides.

For the validation screen on cell surface markers, 3,218 guides were designed that tiled CD58 transcripts (NM_001779.3,

NM_001144822.2) and CD81 transcripts (NM_004356.4, NM_001297649.2) with single nucleotide resolution. The targeting guides

were pooled with 1,186 non-targeting guides to create the final library.

Guide library synthesis, cloning, and library amplification
For each guide spacer sequence in the guide library, we added a constant left overhang (‘‘AACCCCTACCAACTGGTCGGGGTTT

GAAAC’’) and a right overhang (‘‘TTTTTTTTGAATTCAAGCTTGGCGTAACTAGA’’) to facilitate cloning. The resulting libraries were

synthesized as oligo pools by Twist Biosciences, and then PCR amplified using the primer pair: Lib_F (‘‘TCTTGTGGAAAGGACGAAA

CACCGCAAGTAAACCCCTACCAACTGGTCGGGGTTTG’’) and Lib_R (‘‘AGAGCTAGCCAGACGTGTGCTCTTCCGATCNNNNNNNN

NTCTAGTTACGCCAAGCTTGAATTC’’) (Table S1). The PCR reaction was performed using NEBNext High Fidelity PCR Master Mix

(NEB, catalog no. M0541L) for 20 cycles. The amplified library was gel-purified and cloned into the BsmBI digested guide cloning

vector (hU6-(CasRx DR)-EF1a-Puro-WPRE) through Gibson assembly. The cloned guide library was then purified and concentrated

by isopropanol precipitation.

For guide library amplification, the library plasmid was electroporated to Endura electrocompetent E. coli cells (Lucigen, catalog

no. 60242-2) at 50–100 ng/ul. After electroporation, cells were recovered in LBmedium for 1h, and then plated on LB agar plates with

100 ug/mL carbenicillin at 37�C for 12-14h. The colonies were then harvested at a coverage of > 500 colonies per guide. The amplified

guide library plasmid was extracted using the Macherey-Nagel NucleoBond Xtra Maxi EF Kit (Macherey-Nagel, catalog no.

740424.10). To determine guide RNA representation, we PCR amplified the guide region using customized NGS primers containing

Illumina adaptor sequences (Table S1). NextSeq sequencing was performed to determine guide RNA representation in the guide

library. We verified that the library had >87% perfectly matching guides, <0.5% undetected guides, and a skew ratio (90th percenti-

le:10th percentile read number) of less than 10.

Lentivirus production
To produce lentivirus for the guide library, HEK293FT cells, purchased from Thermo Fisher (Cat # R70007), were grown in DMEM

supplemented with 10% FBS (D10 media) at 37 �C with 5% CO2. Cells were passaged at a ratio of 1:2 using TrypLE (Gibco) and

seeded 20–24 h before transfection at 1.8 3 107 cells per T225 flask. For lentiviral plasmid transfection, the guide library plasmid

was mixed with psPAX2 (Addgene, catalog no. 12260) and pMD2.G (Addgene, catalog no. 12259) in Opti-MEM, and transfected

to HEK293FT using Lipofectamine 2000 (Thermo Fisher, catalog no. 11668027) and PLUS reagent (Thermo Fisher, catalog no.

11514015). Medium was replaced 4 hours after transfection with fresh, prewarmed D10 medium. Two days after the start of lentiviral

transfection, the supernatant from the HEK293FT cells was harvested and filtered using a 0.45um Stericup filter. The lentiviral titer

was determined through spinfection on K562 cells prior to the screen.

CasRx cell line generation
To generate a stable CasRx-expressing K562 cell line, we transfected K562 cells with the piggyBac-based all-in-one CasRx expres-

sion vector (PB_EF1a-CasRx-msfGFP-2A-Blast) using Lipofectamine 3000 Transfection Reagent (Thermo Fisher, catalog no.

L3000001). Two days after transfection, we selected the cells with 10 mg/ml blasticidin S (Thermo Fisher, catalog no. A1113903). After

selection for 1-2 weeks, we checked the percentage of CasRx-expressing cells using flow cytometry and confirmed that more than

95% of cells expressed CasRx-GFP.
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Survival screen
The guide library for the survival screen was lentivirally transduced at MOI=0.2 by spinfection into the stable CasRx-expressing K562

cell line. We ensured the guide library had a coverage of >1000 cells per guide. Two days after transduction, cells were selected with

1 mg/ml puromycin to ensure guide expression and further cultured for 14 days. Cells were harvested at day 14 (end of the screen),

and the genomic DNA was extracted using Zymo Research Quick-gDNA MidiPrep (Zymo Research, cat. no. D4075). The guide re-

gion was PCR amplified using customized NGS primers containing Illumina adaptor sequences. The resulting PCR products were gel

purified and quantified with Nanodrop and Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, cat. no. Q32851). Pooled guide li-

braries were sequenced on Illumina NextSeq, with 80 cycles of read 1 (forward) and 8 cycles of index 1. Three biological replicates

were performed for the survival screen.

Validation screen on CD58 and CD81

The guide library for the validation screen on CD81 and CD58 was lentivirally transduced at MOI=0.1 by spinfection into the stable

CasRx-expressing K562 cell line. 45 million cells per biological replicate were transduced to ensure coverage of >1000 cells per

guide. After spinfection, cells were selected with 1 mg/ml puromycin and further cultured for 10 days. At the end of the screen, cells

were divided into two pools and stained with CD58 antibody (BD Biosciences, catalog no. 564363) or CD81 antibody (BD Biosci-

ences, catalog no. 561958) and analyzed using FACSAria II. Following calibration with unstained controls, each cell pool was sorted

into four bins based on target gene expression level indicated by antibody-conjugated fluorescence intensity. Specifically, cells were

first gated by forward and side scatter to select for live, single cells. Next, cells were gated on GFP to select for CasRx-expressing

cells. This final population was sorted into four bins based on the intensity of CD58 or CD81 antibody-conjugated fluorescence in-

tensity. As high efficiency guides were defined as the top 20% for each gene, we set the bin with the lowest target gene expression

(bin 1) at 7-8%,which is equal to the fraction of the target gene’s high efficiency guide number in thewhole library: 1600*0.2/4401. The

rest of the population was equally divided into three bins of the same size (�30%). The genomic DNA for cells in each bin was

extracted and sequenced as in the survival screening. Four biological replicates were performed for the validation screen.

Data preprocessing and definition of high efficiency guides
For each guide RNA we calculated the fraction in the day 14 guide pool and the input library pool. Guide efficiency was evaluated by

the ratio of guide percentage in the day 14 pool to the input pool (Table S3). Guides targeting each transcript were ranked based on

their average ratio across the three replicates, and we defined high efficiency guides for each transcript, taking into account three

parameters: 1) the top 20% guides per transcript; 2) no essential off-targets predicted by BLAST (see the ‘Off-target filtering’ section

below and Figure S1D for details); and 3) with a day 14/input ratio lower than 0.75 (the ratio at 5th percentile of the guides for targeting

control genes). Guides targeting the transcript RPS19BP1 were excluded because they clustered with non-essential controls (most

guides were not effectively depleted in the screen).

For the validation screen, we first filtered guides with fewer than 200 counts in all CD58 bins and CD81 bins. Less than 1.5% of

guides were removed by this filter. We then calculated each guide’s distribution across the 4 bins and used the ratio of guide per-

centage in bin 1 (greatest knockdown) to the sumof its percentage in bins 1 and 4 (least knockdown) for evaluation of guide efficiency.

We then ranked guides within each gene based on their average ratio of the four replicates, and we defined the top 20% guides for

each gene as high efficiency guides.

Off-target filtering
We performed BLAST to identify potential off-target matches for our guides. As the first 24 nucleotides from the 5’ end of the CasRx

guides were shown to be most indicative of guide targeting ability (Figures S2C and S2D), we took the first 24 nucleotides of each

guide as BLAST input. BLAST was performed using a generous E value of 1 (e=1) against the Gencode V33 database. BLAST results

were parsed and off target genes were identified as those with up to three mismatches to the guide input. To check the essentiality of

the off-target genes, we made an essential gene list by combining the essential gene hits from the three previous survival screens in

K562 cells and we compared the off-target genes with the essential gene list. Guides with predicted off-targets in essential genes

were filtered, as we reasoned they may interfere with the interpretation of our survival screen readout. For our survival screening,

6790 guides were filtered and 120281 guides remained for further analysis (Figure S1D; Table S4). For the validation screen, the

filtered dataset is provided in Table S5.

Analysis of the positional distribution of high efficiency guides
For each transcript, we calculated the number of high efficiency guides overlapping each position on the transcript, and plotted the

results using a heatmap. We further summarized the distribution of high efficiency guides across all transcripts and positions with a

histogram. In theory, a particular nucleotide position would have at most 30 guides covering it, so the number of efficient guides

ranges from 0 to 30 for each position. We compared the results with a randomly sampled distribution, which is simulated using

100 random samplings of 20% of the guides in the library. In theory, the randomly sampled distribution would show a peak at 6

(30*20%), which agrees with our simulation results.
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Data splits
For model hyperparameter tuning and evaluation, we split our 54 essential transcripts into 9 folds, each containing a unique and non-

overlapping set of 6 transcripts. The 54 transcripts were distributed evenly across the 9 folds. Using the predefined transcript splits,

we performed 9-fold cross-validation to tune model hyperparameters and compare prediction accuracy between models.

Feature calculation and model inputs
For the sequence input, each 30 nt guide spacer was one-hot encoded into four binary vectors of length 30 to represent the

nucleotide identity at each position.

To predict guide unfolding energy, we used LinearFold, a linear-time RNA secondary structure prediction algorithm45 on the

full-length guide sequence (36 nt DR +30 nt spacer). We started with the default parameters and the CONTRAfold v2.0 model46,59,60

provided by the LinearFold software at https://github.com/LinearFold/LinearFold. We subtracted the predicted MFE (minimum free

energy) with the baseline energy (MFE of the unstructured guide with the 30 nt spacer unfolded) to calculate guide unfolding energy.

We also tested the Vienna RNAfold model in LinearFold as a comparison. To determine whether using the ensemble guide unfolding

energy instead of MFE could improve model prediction, we further tested three RNA structure prediction algorithms (Contrafold2,

Eternafold, Vienna) wrapped by Arnie (https://github.com/DasLab/arnie) to calculate the ensemble guide unfolding energy with

the partition function.46,59,60 For the Vienna package, we tested different temperature (T) settings: 37�C, 60 �C, and 70 �C. In our final

model, we used the guide unfolding energy calculated by LinearFold’s default CONTRAfold v2.0 model as it improved model predic-

tion accuracy to the greatest extent.

To calculate target unfolding energy, we first used LinearFold’s CONTRAfold v2.0 model to predict MFE of the native local target

region using the local target sequence. We then predicted MFE of the guide unwound local target region by supplying the algorithm

with the constraint that the 30 nt guide-binding site is unpaired. (This can be achieved by feeding in an additional constraint structure

with the guide-binding site annotatedwith ‘‘.’’.) We then subtracted the formerMFE (MFE of the native target region) by the latter (MFE

of the guide unwound target region) to estimate local target unfolding energy. The local target region was defined as the 30 nt guide-

binding site with 15 nt flanking sequence on both sides. Flanking sequences of different lengths were compared, and the length 15

was chosen for the final model as it improved model prediction accuracy to the greatest extent.

To calculate the percentage of isoforms targeted by each guide, we obtained all transcript isoforms for each gene from the Refseq

database and evaluated the percentage of isoforms matched for each 30nt guide target (using perfect matches).

To calculate the three position flags, we obtained Refseq’s annotations of the 50 UTR, CDS, or 30 UTR region for our target tran-

scripts. Guides that target the 50 UTR, CDS, or 30 UTR region have a flag value of 1 for that correspondent feature, and 0 for the other

two flag features. To calculate the three position floats (50 UTR position, CDS position, 30 UTR position), we calculated the relative

position of the guide target site in the 50 UTR, CDS, or 30 UTR region. Guides located out of the region have a flag value of 0 for

the correspondent feature.

Model architecture
Sequence-only models

For linear models and ensemble models, the one-hot encoded guide sequence was flattened and converted to 30*4= 120 flag fea-

tures. The features are then fed into the models to generate the output. For the CNNmodel, the one-hot encoded guide was treated

as a 4-channel image, and a few 1D convolutional layers were applied to generate a featuremap, whichwas flattened and passed to a

dense layer to generate the final output. For the biLSTMmodel, the guide sequence was treated as a sentence with four characters,

and two LSTMs, each processing the input sequence in one direction (forward or backward), were applied to generate sequence

representations. The resulting vectors were merged, flattened, and passed to a dense layer to generate the final output.

Full model with secondary features

For the CNN model with secondary features, the one-hot encoded guide was passed to a few convolutional layers as in the

sequence-only model. The output from the CNN layers was flattened and concatenated with the normalized secondary features.

The concatenated feature vector was sequentially passed to a dense layer, a recurrent dense layer and a final dense layer of 1

unit to generate the output. All dense layers use leaky ReLU as the activation function. The CNN layer kernel size, unit number, layer

number and the dense layer unit number were defined after hyperparameter tuning.

For the Gradient-boosted classification tree, the one-hot encoded guide sequence was flattened and converted to 30*4= 120 flag

features. The sequence features are concatenated with the normalized secondary features, and then fed into the model to generate

output.

Model training, hyperparameter tuning and evaluation
All models were trained to solve a binary classification task – predicting probabilities of high efficiency guides. The linear models and

ensemble models were trained in scikit-learn 0.2447 and the deep learning models (LSTM and CNN) were trained in TensorFlow

2.3.1.48 For the deep learning models, we used binary cross-entropy as the loss function and applied the Adam optimizer for model

training. Early stopping was used to prevent model overfitting.

For all models, the prediction accuracy is evaluated by AUROC (Area Under the Receiver Operating Characteristic curve) and

AUPRC (Area Under the Precision-Recall Curve).
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To tune hyperparameters and evaluate model performance, we used 9-fold cross-validation over the hyperparameter space. For

linear models and ensemble models, we used the ‘‘GridSearchCV’’ function in scikit-learn to perform a grid search over the hyper-

parameter set. For deep learning models, we used the Hyperband tuner in TensorFlow to select top models quickly by filtering out

poor models during training.

The hyperparameter sets for all models are listed below:

d logistic regression with L1 regularization: regularization strength in logarithmic intervals from 10�5 to 105

d logistic regression with L2 regularization: regularization strength in logarithmic intervals from 10�5 to 105

d logistic regression with elastic net regularization: regularization strength in logarithmic in intervals from 10�4 to 104, L1 ratio

equally spaced from 0.1 to 1.

d Gradient-boosted classification trees: number of trees – [100,200,400,800,1000,1200,1500,1800,2000], maximum depth of a

tree – [2,4,8], number of features to consider when looking for the best split – [all, sqrt(n_features), log2(n_features)].

d Random forest (RF): number of trees – [100,200,400,800,1000,1200,1500,1800,2000], number of features to consider when

looking for the best split – [all, sqrt(n_features), log2(n_features)].

d Long short-termmemory recurrent neural network (LSTM): LSTM units – [16, 32,64,128], dense layer units – [8, 16, 32], number

of recurrent dense layes – [0,1,2,3], dropout rate – [0.0, 0.1, 0.25]

d Convolutional neural network (CNN): CNN layer kernel size – [3,4,5], CNN unit – [8,16,32,64], number of CNN layers – [3,4,5],

number of dense layer units – [8,16,32,64] number of recurrent dense layers – [0,1,2,3]

For all models, we chose the hyperparameter set with the highest average AUROC across all test sets among the 9-fold splits, and

evaluated the final model performance using both the average AUROC and average AUPRC across test sets.

Secondary feature selection
For the CNN model, we added each secondary feature individually to guide sequence features and calculated the change in model

performance. We selected features that successfully improved model performance, and added these features sequentially upon

guide sequence features to check feature redundancy. We also tried removing individual features from the final model to confirm

the necessity of the features.

For the Gradient-boosted tree, besides the above methods, we also used Boruta, an all-relevant feature selection method that

aims to find all features useful for prediction.49 We implemented it using BorutaPy, the Python implementation of Boruta (https://

github.com/scikit-learn-contrib/boruta_py) on our Gradient-boosted tree.

Model interpretation and feature contributions
For the CNN model, we applied ‘‘Integrated Gradients’’ (IG) to investigate feature contributions in the model. IG is an attribution

method that evaluates feature importance by integrating the gradient of output to input features along the straightline path from

the baseline input to the actual input value.27 Due to the non-linearity of the deep learningmodel, we applied IG to the best-performing

individual CNNmodel on validation CD genes rather than the ensemble model. To compute integrated gradients, we first set all-zero

baselines for the sequence input, position flags, and position floats, and used average baselines for other features. Next, we gener-

ated a linear interpolation between the baselines and the inputs using 50 steps. We then computed gradients using the ‘‘tf.Gradient-

Tape’’ function in TensorFlow for the interpolated points, and approximated the gradients integral with the trapezoidal rule. To eval-

uate the relative importance of each position on the guide, we averaged the absolute integrated gradient values at each position

across all test sequences. To evaluate the contribution of each nucleotide at each position, we averaged the integrated gradients

for that nucleotide across all test sequences.

For the GBT, we applied SHAP (SHapley Additive exPlanations) to investigate feature contributions in the model. SHAP is a game

theoretic approach that estimates how each feature contributes to the model output by providing the SHAP value for each input

feature.28 We implemented the SHAP package from https://github.com/slundberg/shap, and applied it to our Gradient-boosted

tree. To evaluate the relative importance of each position on the guide, we averaged the SHAP values at each position across

test sequences. To evaluate the contribution of each nucleotide at each position, we averaged the SHAP values for that nucleotide

across test sequences.

Cas13a guide sequence contribution to guide efficiency
We analyzed three Cas13a guide efficiency datasets: 1) the Luciferase knockdown dataset containing 186 LwaCas13a guides for

Gaussia luciferase (Gluc) and 93 guides for Cypridina Luciferase (Cluc)6; 2) the endogenous gene knockdown dataset containing

93 LwaCas13a guides for each of KRAS, PPIB and MALAT16; and 3) the ADAPT dataset containing 85 perfect match LwaCas13a

guides for virus detection.29 We calculated the Pearson correlation between each nucleotide at each position with guide efficiency

to evaluate the sequence contribution.

Motif discovery
For motif discovery, we used TF-MoDISco (Transcription Factor Motif Discovery from Importance Scores), an algorithm that dis-

covers motifs by clustering important regions in sequences using per-base importance scores.30 We implemented TF-MoDISco
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from https://github.com/kundajelab/tfmodisco using the integrated gradients of all high efficiency guides in our training data as input.

We ran TF-MoDIScowith a slidingwindow size of 7 and a flank length of 2. For final motif processing, we trimmed the clusteredmotifs

to a window size of 6, added an initial flank length of 2 and a final flank length of 3 to get the final motifs. The top 5 active motifs are

picked and positioned on the 30 nt spacer according to the mode position of sequences in each motif.

Nmer analysis
To identify enriched or depleted positional nmers, we divided our survival screen data to 9 folds as in themodel training workflow and

calculated the ratio of all possible positional nmers’ percentage in high efficiency guides to non-high efficiency guides in the training

set and test set, respectively, for each fold. We identified enriched (or depleted) nmers based on their ratio in the training set with a

predefined ratio cut-off. We selected the nmers identified as enriched (or depleted) across all folds, and ranked them by their average

percent in high efficiency guides in the test sets across all folds. The initial ratio cut-off is set as 2 for enriched nmers and 0.5 for

depleted nmers. The cut-off is adjusted during the nmer identification process so that the percent of guides with enriched nmers

is �20% and the percent of guides with depleted nmers is �40%. We mainly focused on 3-mers and 4-mers in this paper.

Final model and model testing on the validation screens
We chose the CNNmodel as our final model after hyperparameter tuning andmodel comparison. We re-trained themodel using all of

the survival screen data. To prevent overfitting, we split out a validation set during model training as in the previous 9-fold cross-vali-

dation split. We built 9 individual models using different validation sets from the 9-fold split of essential transcripts, and we compared

their performance on the two cell surface markers,CD58 andCD81. We further built an ensemble model that averaged the prediction

of all the individual models.We found that the ensemblemodel outperformed all individual models on the twoCDgenes, sowe set the

ensemble CNN model as our final model. As a comparison, we also retrained the best non-deep learning model, the Gradient-

boosted tree (GBT), using all of the survival screen data.We tested themodel on the twoCDgenes and evaluatedmodel performance

using AUROC and AUPRC.

Model comparison with Wessels et al. model and DeepCas13
We tested the performance of the Random forest model from Wessels et al. on our CD genes and essential genes using the web

server https://cas13design.nygenome.org.15,61 We evaluated the model performance using AUROC, AUPRC, Spearman’s correla-

tion coefficient, rs and true positive ratios at 0.8 and 0.9 model score cutoffs. As the Random forest model is designed for 23 nt long

guides, we extended the guides from their model output to 30 nt (extends toward the 30 end) to be in accordancewith our screen data.

For comparison, we retrieved the CasRx guide tiling screen dataset on three genes,CD46,CD55, andCD71, fromWessels et al. and

tested our model’s performance. We adjusted the guide length to 23 nt in our model to be in accordance with their screen data, and

we set the top 20% guides for each gene as ‘‘high efficiency guides’’. The model performance was also evaluated by AUROC,

AUPRC, Spearman’s correlation coefficient, rs and true positive ratios at 0.8 and 0.9 model score cutoffs.

We tested the performance of DeepCas1318 on our CD genes using the web server http://deepcas13.weililab.org. We evaluated

the model performance using AUROC, AUPRC, Spearman’s correlation coefficient, rs and true positive ratios at 0.8 and 0.9 model

score cutoffs.

Cas13d guide efficiency prediction tool and website
A website-based Cas13d guide efficiency prediction tool was developed using our CNN model for Cas13d guide design across

model organism transcriptomes and custom RNA sequences.

For model organism Cas13d guide design, we precomputed the Cas13d guide efficiency for all coding and non-coding genes of

each model organism. Briefly, reference transcriptome sequences and annotations were obtained from the UCSC Table Browser62

with the NCBI RefSeq track. All possible 30 nt Cas13d guide spacers were extracted from the transcriptome sequences with single

nucleotide resolution. Secondary features were calculated for each guide as described in the ‘feature calculation and model inputs’

section above. The final CNNmodel was applied to all guides for prediction of their efficiency, and the guides were rankedwithin each

gene based on the model prediction scores.

For custom sequence guide design, all possible 30 nt Cas13d guide spacers are extracted from the input custom RNA sequences

with single nucleotide resolution. Guide unfolding energy and target unfolding energy are calculated as described in the ‘feature

calculation and model inputs’ section above. A CNN model that uses guide sequence, guide unfolding energy and target unfolding

energy as inputs, trained on the survival screen dataset, is applied to the custom sequence guides for prediction of their efficiency.

Guides are ranked based on the model prediction scores.

The Cas13d guide efficiency prediction tool is freely available on a public, user-friendly website: https://www.RNAtargeting.org.

Computational identification of novel Cas13d orthologs through metagenomic database mining
We applied our previously described pipeline for novel CRISPR effector discovery7 to incompletely assembledmetagenomic contigs

in addition to whole genome, chromosome, and scaffold-level prokaryotic and metagenomic sample assemblies from the NCBI

Genome database (https://www.ncbi.nlm.nih.gov/), the Gigadb repository (http://gigadb.org/), as well as the JGI Genome portal

(https://genome.jgi.doe.gov/portal/).
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Putative effectors encoded near identified CRISPR arrays (<kb distance) were assigned to previously identified Cas13 families via

tBLASTn analysis, where a bit score of at least 60 to any prior Cas13 subfamily member was required for cluster assignment. As a

second round of discovery independent of CRISPR array identification, tBLASTnwas performed on all original and predicted Cas13d

effectors from the first round against all public metagenome whole genome shotgun sequences without predicted open reading

frames (ORFs) from all three sources listed above. New full-length homologs and homologous fragments were aligned using Clustal

Omega and clustered using PhyML 3.2.50 All the Cas13d ortholog sequences are provided in Table S7.

Construction of Cas13 phylogenetic tree
A custom sequence database of bacterial isolate and metagenomic sequences was constructed by aggregating publicly available

sequence database, including NCBI, UHGG,63 JGI IMG,64 the Gut Phage Database,65 the Human Gastrointestinal Bacteria Genome

Collection,66 MGnify,67 Youngblut et al. animal gut metagenomes,68 MGRAST,69 and Tara Oceans samples.70 Cas13 sequences

from other Cas13 families were identified by searching representative members of each clade (Cas13a/b/bt/c/x/y) against a collec-

tion of protein representatives (clustered at 30% identity) derived from the custom sequence database using hmmsearch from the

hmmer package.71 Selected Cas13a, Cas13b, Cas13c, Cas13d representatives were LbuCas13a, BzoCas13b, AspCas13c, and

CasRx respectively. The Cas13bt representative was collected from Kannan et al.72 and the Cas13X and Cas13Y representatives

were collected from Xu et al.10 All hits that met E < 1e-6 and were 75%-125% the length of the representative sequence were re-

tained. Sequences were assigned to the best matching representative. Sequences were then clustered at the 50% identity level

along 80% of both sequences using the mmseqs package.51 Sequences were then aligned using the MAFFT algorithm mafft-linsi.52

PhyML was used to generate phylogenetic trees with default parameters.50 Trees were visualized using the ggtree package in R.53

Cloning of Cas13d orthologs and Cas7-11
For initial testing and efficiency screening, human codon optimized Cas13d sequences, flanked by two nuclear localization or export

sequences, were cloned into a backbone derived from pXR001: EF1a-CasRx-2A-EGFP (Addgene #109049) to replace the CasRx

CDS. Guide sequences targeting mCherry or CD81 were cloned into a backbone derived from pXR003: CasRx gRNA cloning

backbone (Addgene #109053) with 50 full-length direct repeat (DR) sequences for each Cas13d ortholog. For testing the seven

high efficiency Cas13d orthologs in stem cells, the Cas13d CDSs and respective mature DR guide scaffold sites were cloned

into the inducible piggyBac-based all-in-one plasmid containing the Cas13d effector, guide DR, piggyBac transposase, and anti-

biotic selection cassette: hU6-DR-TRE-Cas13d-T2A-msfGFP-EF1a-rtTA-T2A-Puro-CMV-transposase. Human codon optimized

DisCas7-11 protein sequence and the mature DR guide scaffold with golden gate sites were PCR amplified from Addgene plasmids

# 172507 and #172508, a gift from Omar Abudayyeh & Jonathan Gootenberg, and cloned to the constitutive piggyBac-based all-in-

one backbone plasmid as mentioned before. Guide spacers were position matched to CasRx and DjCas13d’s guide spacers and

were cloned into the backbone plasmid using Golden Gate cloning. All individual guide sequences are provided in Table S6.

Transfection of human cell lines
For initial testing and efficiency screening of Cas13d orthologs, HEK293FT cells were plated at 20,000 cells per well in a 96-well plate,

then transfected at >80% confluence with 192 ng Cas13d-2A-EGFP plasmid, 192 ng of crRNA expression plasmid, and 12 ng of

mCherry expression plasmid using Lipofectamine 2000. Cells were harvested 48 hours after transfection for flow cytometry analysis

of mCherry expression. For CD81 knockdown experiments, HEK293FT cells were transfected with 200 ngCas13d-2A-EGFP plasmid

and 200 ng guide RNA expression plasmid using Lipofectamine 2000. Cells were harvested 48 hours after transfection for staining

and flow cytometry analysis of CD81 expression.

For experiments comparing CasRx, DjCas13d, and Cas7-11 in HEK293FT cells, cells were plated at 16,000 cells per well in a

96-well plate and transfected at > 80% confluence with 100 ng of all-in-one PiggyBac plasmids containing CasRx, DjCas13d, or

Cas7-11 using Lipofectamine 2000 (Life Technologies). Cells were selected with 1 mg/ml puromycin 24h after transfection. 24 hours

after selection, cells were harvested for RNA extraction and downstream processing.

For individual guide testing in Hela cells, low passage cells were plated at a density of 15,000 cells per well in a 96-well plate and

transfected at > 80% confluence with all-in-one PiggyBac plasmids containing CasRx or DjCas13d using FuGENE�HD Transfection

Reagent (E2311, Promega) according to the manufacturer’s protocol. Cells were selected with 1 mg/ml puromycin and induced with

Doxycycline (D3072, Sigma) for CasRx or DjCas13d expression 48h after transfection. Flow analysis was performed seven days after

induction.

For individual guide testing in U2OS cells, low passage cells were plated at a density of 15,000 cells per well in a 96-well plate and

transfected at > 80% confluence with all-in-one PiggyBac plasmids containing CasRx or DjCas13d using ViaFect� Transfection Re-

agent (E4981, Promega) according to the manufacturer’s protocol. Cells were selected with 0.75 mg/ml puromycin and induced with

Doxycycline (D3072, Sigma) for CasRx or DjCas13d expression 48h after transfection. Flow analysis was performed seven days after

induction.

For individual guide testing in A375 cells, low passage cells were plated at a density of 25,000 cells per well in a 96-well plate and

transfected at > 80% confluence with all-in-one PiggyBac plasmids containing CasRx using TransIT-X2 (MIR 6003, Mirus) according

to the manufacturer’s protocol. Cells were selected with 0.5 mg/ml puromycin and induced with Doxycycline (D3072, Sigma) for

CasRx expression 48h after transfection. Flow analysis was performed seven days after induction.
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For enzyme comparison and individual guide testing in H1 cells, low passage cells were passaged with Accutase (Innovative Cell

Technologies) and plated into aMatrigel-coated 96-well plate withmTESRmedia containing ROCK inhibitor Y-27632 (10 uM, Abcam)

at 30,000 cells per well one day before transfection. On day 1, cells were transfected at > 80% confluence with all-in-one PiggyBac

plasmids containing different Cas13d orthologs using FuGENE� HD Transfection Reagent (E2311, Promega) according to the man-

ufacturer’s protocol. Cells were selected with 0.5 mg/ml puromycin 48h after transfection. 5-7 days after selection, Cas13d expres-

sion was induced with Doxycycline (D3072, Sigma). Flow cytometry analysis was performed three days after induction.

For RNAseq experiments in H1 cells, low passage cells were passaged with Accutase (Innovative Cell Technologies) and plated

into Cultrex (R&DSystems 343400502)-coated 96-well plates withmTESRmedia containing ROCK inhibitor Y-27632 (10 uM, Abcam)

at 25,000 cells per well one day before transfection. On day 1, cells were transfected at > 80% confluence with all-in-one PiggyBac

plasmids containing different Cas13d orthologs using FuGENE� HD Transfection Reagent (E2311, Promega) according to the man-

ufacturer’s protocol. Cells were split and selected with 0.75 mg/ml puromycin 24h after transfection. Puromycin concentration was

increased to 1ug/ml the next day. 72h after transfection, cells were harvested for RNA extraction and downstream processing.

Staining and flow cytometry
For cell surface protein staining, cells were harvested and dissociated with TrypLE, followed by two washes in cold FACS buffer

(DPBS + 2 mM EDTA + 0.02% BSA), and then blocked with Human TruStain FcX (Biolegend) for 10 minutes. Cells were then stained

with target antibodies for 1 hour at 4�C in the dark, followed by two washes using the FACS buffer, and then analyzed by flow

cytometry.

For intracellular staining, cells were dissociated with Accutase and resuspended in DMEM/F12 with GlutaMAX (ThermoFisher, Cat

#10565018) with 20% trypsin inhibitor. Cells were then fixed with Cytofix/Cytoperm solution (BD) at 4�C for 20 minutes, followed by

washes with Perm/Wash solution (BD). Cells were then stained with target antibodies for 45 minutes at 4�C in the dark, followed by

two washes with the FACS buffer, and then analyzed by flow cytometry.

RT-qPCR
Cells were lysed with BME-supplemented RLT buffer and total RNA was extracted with the RNeasy Plus 96 Kit (Cat #74192,

QIAGEN). The extracted RNA was then reverse transcribed using RevertAid RT Kit (Thermo Fisher, Cat # K1691) with random hex-

amer primers at 25�C for 5min, 42�C for 60min, and 70�C for 5 min. qPCRwas then performed using Taqman Fast AdvancedMaster

Mix (Thermo Fisher, Cat # 4444965) and Taqman probes for GAPDH control (Thermo Fisher, Cat # 4326317E) and target genes (IDT,

customgene expression assays). Custom Taqman probe and primer sets were designed to amplify target regions spanning the guide

target sites. qPCRwas performed in 384-well plates using the LightCycler 480 Instrument II (Roche). Target gene expression change

was calculated relative to non-targeting controls using the ddCt method.

Cell viability assays
For cell viability assays in HEK293FT, cells were plated at 9,000 cells per well in a 96-well plate the day before transfection. Cells were

transfected with 100 ng of all-in-one PiggyBac plasmid containing constitutive CasRx, DjCas13d, or Cas7-11 using Lipofectamine

2000 (Life Technologies). 72 hours after transfection, cell viability was measured using WST-1 reagent (5015944001, Sigma) with

an incubation time of 2 hours and measurement of absorbance at 440nm. Cell viability of targeting guide groups for each effector

was compared relative to the corresponding non-targeting guide group. Three biological replicates were performed.

To measure cell viability in stem cells, Hela, U2OS and A375 cells, cells were transfected with the inducible all-in-one PiggyBac

plasmids containing inducible CasRx, DjCas13d, or other Cas13d orthologs. After selection for plasmid integration with 1 mg/ml pu-

romycin for 5-7 days, cells were induced for effector (CasRx, DjCas13d or other Cas13d orthologs) expression using Doxycycline

(D3072, Sigma). 3-5 days after induction, flow analysis was performed to quantify the percent of cells expressing the effector in

each experimental group using the GFP reporter. The GFP+ percentage of cells with targeting guide groups for each effector was

normalized to that of the corresponding non-targeting guide group for evaluation of cell viability upon target RNA knockdown. Three

biological replicates were performed.

To measure cell viability in stem cell derived NPCs, HPCs, or neurons, we transfected stem cells with the inducible all-in-one

PiggyBac plasmids containing inducible DjCas13d and selection with 1 mg/ml puromycin for 7 days to ensure plasmid integration.

Differentiation procedures were then initiated and cells were induced for DjCas13d expression using Doxycycline (D3072, Sigma)

at the middle time point of differentiation. 5-7 days after induction, flow analysis was performed to quantify the percent of cells ex-

pressing the effector in each experimental group using the GFP reporter. The GFP+ percentage of cells with targeting guide groups

for each effector was normalized to that of the corresponding non-targeting guide group for evaluation of cell viability upon target

RNA knockdown. Three biological replicates were performed.

RNA-seq library preparation and sequencing
For HEK293FT cells, total RNA was extracted with the RNeasy Plus 96 Kit (Cat #74192, QIAGEN) 48h after transfection. For H1 cells,

cell numbers were counted and normalized between different samples (different effectors, guides and replicates) 72h after transfec-

tion, and total RNA was extracted with the RNeasy Plus 96 Kit (Cat #74192, QIAGEN). Stranded mRNA libraries were prepared using
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the NEBNext II Ultra Directional RNA Library Prep Kit (NEB, Cat# E7760L) and NEBNext Poly(A) mRNA Magnetic Isolation Module

(NEB, Cat #E7490). The libraries were sequenced on a partial NovaSeq lane with 150 nt paired end reads. �20M reads were demul-

tiplexed per sample.

RNA-seq analysis and pathway analysis of CasRx off targets
Sequencing reads were aligned to the hg38 Ensembl transcriptome using Kallisto.54 Mapping was carried out using default

parameters except for a b value (number of bootstraps) of 100. Differential transcript expression was performed with Sleuth55 using

triplicates to compare between targeting and non-targeting conditions. Significantly differentially expressed transcripts were defined

as having an adjusted p value < 0.1 and a beta value > 0.5. Volcano plots were generated in R. Pathway analysis of CasRx off targets

was performed using Enrichr56–58 with the Molecular Signatures Database (MSigDB).

RNA-seq Spike-In for total RNA quantification
To quantify total RNA amount accurately and determine if uniform transcriptome depletion has occurred following CasRx- or

DjCas13-mediated transcriptome targeting, an equal amount of ERCC RNA Spike-In Mix (ThermoFisher, Cat #4456740) was added

to the total RNA extracted from cell number-normalized H1 samples using the recommended dilution ratio before library preparation.

After library preparation and NGS sequencing, the ratio of experimental reads to spike-in reads was calculated for all samples, and

then normalized to the ratio of control samples (non-targeting guides) to get the total RNA amount relative to NT.

RNA integrity analysis
To examine RNA integrity, electrophoresis was performed on the extracted RNA and the electrophoresis graphs were visualized on

high sensitivity RNA chips using either Bioanalyzer (Agilent 2100 Bioanalyzer, G2939BA) (for experiments in HEK293FT) or

TapeStation (Agilent 4200 TapeStation system, G2991AA) (for experiments in H1).

Stem cell differentiation to NPC, HPC, neurons and RNA targeting experiments
For RNA targeting experiments in NPC and HPC, human embryonic stem cells (hESCs, H1 line, WiCell) were first transfected with

inducible piggyBac-based all-in-one DjCas13d plasmids containing a puromycin resistance gene as mentioned above. For RNA tar-

geting experiments in neurons, H1s were first transfected with inducible piggyBac-based all-in-one DjCas13d plasmids containing

neomycin resistant gene by replacing the puromycin resistance gene in the piggyBac-based all-in-one DjCas13d plasmid with a

neomycin resistance gene. After selection for plasmid integration with 1 mg/ml puromycin (NPC and HPC) or 100 mg/ml G418 Sulfate

(neurons) for 7 days, differentiation procedures were performed as outlined below.

For differentiation to NPC, stem cells were passaged with Accutase (Innovative Cell Technologies) and plated at 30,000 cells per

well into Matrigel-coated 96-well plates with N2B27 media (DMEM/F12 (Thermo Fisher) + N2 (100x, Thermo Fisher) + B27 without

vitamin A (50x, Thermo Fisher)) containing ROCK inhibitor Y-27632 (10 uM, Abcam) and bFGF (40 ng/mL, Corning). The following

day (day 0), media was replaced with N2B27 media containing AZD-4547 (50 nM, Abcam, Cat# ab216311), LDN-193189

(250 nM, Sigma, Cat# SML0559), A83-01 (250 nM, Sigma, Cat# SML0788), and XAV-939 (3 uM, Abcam, Cat# ab120897) to achieve

dual SMAD and Wnt inhibition. Media was changed daily. On day 3, AZD-4547 was removed. On day 4, cells were passaged with

Accutase (Innovative Cell Technologies) at 1:3 and plated again onto Matrigel-coated 96-well plates in N2B27 media containing

ROCK inhibitor Y-27632 (10 uM, AbAcam), LDN-193189 (250 nM, Sigma, Cat# SML0559), A83-01 (250 nM, Sigma, Cat#

SML0788), and XAV-939 (3 uM, Abcam, Cat# ab120897). Media was replaced the next day with N2B27 containing LDN-193189

(250 nM, Sigma, Cat# SML0559), A83-01 (250 nM, Sigma, Cat# SML0788), and XAV-939 (3 uM, Abcam, Cat# ab120897). Media

was changed daily and cells were induced for DjCas13d expression using Doxycycline (D3072, Sigma) on day 5. On day 8, all drugs

were removed and the media was changed with N2B27 only (DMEM/F12 + N2 (100x) + B27 without vitamin A (50x)). On day 10, the

cells were assayed for target knockdown and NPC marker expression (Pax6 and Sox1) using flow cytometry.

For differentiation toHPC, stem cells were passagedwith ReLeSR (StemCell Technologies) and plated at�40 colonies per well into

Matrigel-coated 12-well plates with mTesR media (StemCell Technologies) containing ROCK inhibitor Y-27632 (10 uM, Abcam). The

following day (day 0), media was replaced with 2 mL Hematopoietic Media A (STEMdiff Hematopoietic Basal Media (StemCell Tech-

nologies) with STEMdiff Hematopoietic Supplement A (200x, StemCell Technologies)). On day 2, a half-media change with Hemato-

poietic Media A was performed. On day 3, the media was fully replaced with 2 mL Hematopoietic Media B (STEMdiff Hematopoietic

BasalMedia (StemCell Technologies) + STEMdiff Hematopoietic Supplement B (200x, StemCell Technologies). On day 5, therewas a

half-media changewith Hematopoietic Media B, and cells were induced for DjCas13d expression using Doxycycline (D3072, Sigma).

On day 7 and day 10, 1 mL fresh Hematopoietic B media was added but no media was removed. On day 12, the cells were assayed

for target knockdown and HPC marker expression (CD43) using flow cytometry.

For differentiation to neurons, hESCs (H1) were passaged with Accutase (Innovative Cell Technologies) and plated at 12,000 cells

per well into Cultrex (R&D Systems 343400502)-coated 96-well plates with mTeSRmedia (StemCell Technologies) containing ROCK

inhibitor Y-27632 (10 uM, Abcam). The following day cells were infected with lentivirus containing a doxycycline-inducible Ngn2

cassette in mTeSR media (StemCell Technologies) containing polybrene (10 mg/mL, Santa Cruz Biotechnology sc-134220).

Following infection, media was changed daily to mTeSR media (StemCell Technologies). When cells reached 70% confluency,

they were passaged with Accutase (Innovative Cell Technologies) and re-plated at 12,000 cells per well into Cultrex-coated

96-well plates with mTeSR media (StemCell Technologies) containing ROCK inhibitor Y-27632 (10 uM, Abcam). The day of passage
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was designated as day 0 of the differentiation protocol. The following day (day 1), media was replaced with mTeSR media

(StemCell Technologies). On day 2, cells were induced for Ngn2 and DjCas13d expression using 2 ug/mL Doxycycline (2 ug/mL,

Sigma D3072). On day 3, media was replaced with neural induction media (NIM, DMEM/F12 (Gibco 11330032) + Penicillin-

Streptomycin (Gibco 15140122) + Doxycycline (2 ug/mL, Sigma D3072) + Laminin (1.2 ug/mL, Sigma L4544) + Insulin (5 ug/mL,

Roche 11376497001) + BSA (10 mg/mL, Sigma A4161) + Apo-transferrin (10 mg/mL, Sigma T1147) + Putrescine (1.6 mg/mL, Sigma

P57800) + Progesterone (0.00625 mg/mL, Sigma P8783) + Sodium selenite (0.00104 mg/mL, S5261) + BDNF (10 ug/mL, Sigma

B3795) + Puromycin (10 ug/mL, Life Technologies A1113803)). Media was changed daily. After 3 days of puromycin selection, cells

were passagedwith Accumax (Innovative Cell Technologies) and plated at 87,500 cells per well with neural maturationmedia (Neuro-

basal differentiation media (Neurobasal Media (Gibco 21103049) + DMEM Media (Gibco 10569010) + HEPES (0.5x, Gibco

15630130) + Penicillin-Streptomycin (Gibco 15140122) + Glutamax (1 mM, Gibco 35050061)) + Doxycycline (2 ug/mL, Sigma

D3072) + Laminin (2.4 ug/mL, Sigma L4544) + BDNF (10 ug/mL, Sigma B3795) + dbCAMP (49.14 ug/mL, Sigma Aldrich D0627) +

B27 with vitamin A (1x, Gibco 17504044) + N-acetyl cysteine (5 ug/mL, Sigma A9165) containing ROCK inhibitor Y-27632 (10 uM,

Abcam). Media was changed daily. On day 8, media was replaced with neural maturation media containing AraC (2.4 ug/mL, Sigma

Aldrich C1768) to remove any post-mitotic neurons from the culture. On day 11, the cells were assayed for target knockdown using

flow cytometry.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size and statistical details can be found in the figure legends and results. For themodel, sample size represents the number of

data splits (9) or the number of data points. For all experiments, sample size represents the number of biological replicates and is

indicated in the respective figure legend. Mean ± SD or mean ± SEM were reported in the figures and indicated in the legends.

When comparing two groups (e.g. top guides vs low scoring guides), two-tailed unpaired t-test was used with Welch’s correction

and statistical significance was determined with a confidence level of 95%.When comparing more than two groups (e.g. model com-

parison and enzyme comparison), one-way ANOVA was used with Tukey multiple hypothesis correction. P value was adjusted for

multiple comparisons and the confidence interval is 95%. All statistical analysis was performed in PRISM 9.
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