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Abstract

All of life encodes information with DNA. While tools for sequencing, synthesis, and editing of genomic code
have transformed biological research, intelligently composing new biological systems would also require a
deep understanding of the immense complexity encoded by genomes. We introduce Evo 2, a biological
foundation model trained on 9.3 trillion DNA base pairs from a highly curated genomic atlas spanning all
domains of life. We train Evo 2 with 7B and 40B parameters to have an unprecedented 1 million token con-
text window with single-nucleotide resolution. Evo 2 learns from DNA sequence alone to accurately predict
the functional impacts of genetic variation—from noncoding pathogenic mutations to clinically significant
BRCA1 variants—without task-specific finetuning. Applying mechanistic interpretability analyses, we reveal
that Evo 2 autonomously learns a breadth of biological features, including exon—intron boundaries, transcrip-
tion factor binding sites, protein structural elements, and prophage genomic regions. Beyond its predictive
capabilities, Evo 2 generates mitochondrial, prokaryotic, and eukaryotic sequences at genome scale with
greater naturalness and coherence than previous methods. Guiding Evo 2 via inference-time search enables
controllable generation of epigenomic structure, for which we demonstrate the first inference-time scaling
results in biology. We make Evo 2 fully open, including model parameters, training code, inference code, and
the OpenGenome2 dataset, to accelerate the exploration and design of biological complexity.
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1. Introduction

Biological research scales from molecules to systems to organisms, seeking to understand and design functional
components across all domains of life (Darwin, 1859; Mendel, 1866; Dobzhansky, 1951). Creating a machine
to design functions across the diversity of life would require it to learn a deep, generalist representation of
biological complexity. While this complexity surpasses straightforward human intuition, advances in artificial
intelligence offer a universal framework that leverages data and compute at scale to uncover higher-order
patterns (Vaswani et al., 2017; Kaplan et al., 2020). We reasoned that training a model with these capabilities
would require data spanning the full spectrum of biological diversity to discover emergent properties similar
to those found in other fields (Radford et al., 2019).

All domains of life express complex functions from DNA sequences (Watson and Crick, 1953; Nirenberg and
Matthaei, 1961), yet genomic content and length vary dramatically across organisms. Prokaryotic genomes
maintain relatively simple organization (Jacob and Monod, 1961; Overbeek et al., 1999), while eukaryotic
evolution has produced intricate genomic architectures characterized by extensive noncoding regions, alter-
native splicing patterns, and multiple layers of epigenomic control (Chow et al., 1977; Brownell et al., 1996).
These features underpin the emergence of multicellularity, sophisticated traits, and intelligent behaviors that
are unique to eukaryotic life (Szathmary and Smith, 1995).

We previously demonstrated that machine learning models trained on prokaryotic genomic sequences can
model the function of DNA, RNA, and proteins, as well as their interactions that create complex molecular
machines (Nguyen et al., 2024a; Merchant et al., 2024). However, extending this sequence modeling paradigm
to eukaryotic genomes would require advances in data curation, model architecture, training and inference
infrastructure, and inference-time compute to address the scale and complexity of eukaryotic genomes.

Here we present Evo 2, a biological foundation model that is trained on a representative snapshot of
genomes spanning all observed evolution. Emphasizing generalist capabilities over task-specific optimization,
Evo 2 achieves robust prediction and generation performance from molecular to genome scale and across all
domains of life. We trained two versions of Evo 2 at 7B and 40B parameters, leveraging over 9.3T tokens
at single-nucleotide resolution. These models were trained with a context window up to 1M tokens and
demonstrate effective retrieval across the full context. To enable the research community, we release, to our
knowledge, the largest-scale fully open language model to date, including open-source training code, inference
code, model parameters, and the OpenGenome?2 training data.

Evo 2 exhibits strong performance across biological sequence tasks. Building upon our previous work
(Nguyen et al., 2024a), Evo 2 learns how mutations affect protein, RNA, and organismal fitness, while now
generalizing beyond prokaryotes to include humans, plants, yeast, and other eukaryotes. Remarkably, without
any variant-specific training, architectural optimization, or multiple sequence alignments, Evo 2 is the first
language model capable of scoring the impact of all variant types on pathogenicity and splicing, achieving
accurate and state-of-the-art performance in predicting the pathogenic effects of noncoding variation. Fur-
thermore, a supervised model built on Evo 2 embeddings attains state-of-the-art performance on classifying
BRCA1 variants of unknown significance in breast cancer.

To elucidate the model’s learned concepts, we applied mechanistic interpretability techniques that de-
compose large language model representations into understandable components (Cunningham et al., 2023;
Bricken et al., 2023). Using sparse autoencoders (SAEs), we identified a diverse set of features corresponding
to key biological signatures, including intron and exon boundaries, transcription factor motifs, and protein
structure characteristics. These feature-based annotations can also be leveraged for discovery tasks, such as
identifying prophage regions and mobile genetic elements.

Evo 2 can also leverage its unique representation of biological complexity to generate new genomic se-
quences. We first demonstrate unconstrained generation of genome- and chromosome-scale sequences with
improved naturalness compared to previous genomic language models. This includes the ability to gener-
ate complete mitochondrial genomes, minimal bacterial genomes, and entire yeast chromosomes. We also
demonstrate how inference-time search can guide generation with Evo 2 to successfully achieve complex de-
sign tasks. In particular, we demonstrate controllable generation by using models of epigenomic state to design
novel DNA sequences for which we can specify the location and length of chromatin-accessible regions, allow-
ing us to write simple Morse code messages into our epigenomic designs. In doing so, we demonstrate the
first inference-time scaling results for biological language modeling, extending our previous work that showed
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Figure 1 | Overview of model architecture, training procedure, datasets, and evaluations for Evo 2.
(A) Evo 2 models DNA sequence and enables applications across the central dogma, spanning molecular and
cellular scales. (B) Evo 2 is trained on data encompassing trillions of nucleotide sequences from all domains

of life.

Each UMAP point indicates a single genome. (C) A two-phase training strategy optimizes model
performance while expanding up to 1 million base pairs to capture wide ranging biological patterns.

D)

Novel data augmentation and weighting approaches prioritize functional genetic elements during pretraining
and long-sequence composition during midtraining. (E) The number of tokens used to train Evo 2 40B and 7B,
split into the short phase pretraining and the long context midtraining. (F) Schematic of the new multi-hybrid
StripedHyena 2 architecture, showing the efficient block layout of short explicit (SE), medium regularized
(MR), and long implicit (LI) hyena operators.
between StripedHyena 2, StripedHyena 1 and Transformers, showing improved throughput. (H) Validation
perplexity of Evo 2 midtraining comparing the model size and context length, showing benefits with scale and
increasing context length. (I) A modified needle-in-a-haystack task evaluates Evo 2’s long context recall ability
up to 1 million sequence length, showing the model performs effective recall at 1 million token context.

(G) Comparison of iteration time at 1024 GPU, 40B scale
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the first scaling laws for DNA sequence pretraining.

Evo 2 and future iterations of the DNA foundation modeling paradigm represent the first steps toward
generative biology for genomic and epigenomic design. This computational ability, combined with our recent
experimental advances in large-scale programmable DNA manipulation (Durrant et al., 2024), may enable
the direct programming of diverse synthetic life. Furthermore, combined with application-specific scoring
functions to provide inference-time guidance, Evo 2 enables the design of complex biological architecture
beyond DNA alone.

2. Results

2.1. Evo 2 model architecture, training procedure, and data

Evo 2 represents a major advance in genomic language models, scaling to 40 billion parameters and handling
sequences of up to 1 million base pairs in length. Evo 2 was trained on genetic sequences from all domains of life
and is useful for predictive and generative tasks across multiple scales of complexity (Figure 1A). We release
OpenGenome2, a new dataset compiled from curated, non-redundant nucleotide sequence data, totaling over
8.8 trillion nucleotides from bacteria, archaea, eukarya, and bacteriophage (Figures 1B and S1A).

We trained two versions of Evo 2: a smaller version at 7B parameters trained on 2.4 trillion tokens and a full
version at 40B parameters trained on 9.3 trillion tokens. Both Evo 2 7B and 40B are trained in two phases to
capture biological length scales from molecular to organismal (Figure 1C). Our first stage of pretraining uses
a context length of 8,192 tokens, with data weighting focused on genic windows to learn functional genetic
elements (Appendix B.2), followed by a multi-stage midtraining phase over which we extend Evo 2’s context
length to 1 million tokens to learn the relationships between elements across long genomic distances (Figures
1C,D). This matches best practice among large language models for natural language, where initial pretraining
at shorter context lengths improves both efficiency and overall model quality (Gao et al., 2024b; Dubey et al.,
2024; Liu et al., 2024). As in Evo 1, we excluded genomic sequences from viruses that infect eukaryotic hosts
from the training data. We verified that these data exclusions led to high perplexity on genomic sequences
from eukaryotic viruses (Figure S2A), indicating poor language modeling performance in this domain.

Evo 2 uses StripedHyena 2, the first convolutional multi-hybrid architecture (Ku et al., 2025). Multi-hybrids
are a new class of model architectures designed explicitly to leverage the synergy between multiple different
types of operators, arranged in a striped pattern. In particular, StripedHyena 2 relies on a combination of
three different variants of input-dependent convolution operators (Poli et al., 2023) and attention (Figure
1F), improving efficiency of training at scale on both short and long sequences. StripedHyena 2 provides sub-
stantially higher throughput (at 40 billion parameters, up to 1.3x speedup at 16 thousand context length and
3x speedup at 1 million context length) than highly optimized Transformer (Vaswani et al., 2017) baselines
and previous generation hybrid models based on recurrences or long convolutions, such as StripedHyena 1
(Poli et al., 2024) (Figure 1G). StripedHyena 2 also improves loss scaling on DNA against both Transformers
and StripedHyena 1 (Figure S1D).

We compare different context extension methods for StripedHyena 2 and find methods using rotary em-
beddings can be applied to effectively extend the context length, similarly to StripedHyena 1 in Evo 1 (Ku
et al., 2025). This enables us to train up to 1 million base pairs in context length through a multi-stage exten-
sion phase, which shows improvements in loss with both model scale and longer context (Figure 1H). With a
synthetic long-context evaluation, we demonstrate that the model can implement recall to retrieve a 100 base
pair needle from different positions in a 1 million base pair long “haystack” of random DNA sequence (Figure
1I and S1C).

To promote open science and facilitate community development, we have released Evo 2’s model pa-
rameters, training code, inference code, and training data freely available under an open-source license
(Discussion). This makes Evo 2 one of the largest-scale fully open AI models, not just in biology but also
compared to natural language models based on the Transformer architecture (Table 1).
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Figure 2 | Evo 2 predicts mutational effects on protein, RNA, and organismal fitness across all domains
of life. (A) We used Evo 2’s zero-shot likelihoods to predict the effects of DNA, RNA, or protein mutations
on molecular function or organismal fitness. (B) We used the change in Evo 2’s sequence likelihood caused
by different mutations along gene start sites for various model species across the tree of life. Evo 2 predicts
mutations to be unlikely in the start codons of protein-coding genes, the first two bases of each codon of the
coding region, and the ribosome-binding sites of the 5" UTR. See Figure S3A for an additional analyses. (C,
D) For different prokaryotic (C) and eukaryotic (D) sequences, we scored the likelihood of different types of
mutations in different genomic elements using Evo 2 7B. Results align with known biology such that regions
under stronger evolutionary constraint are also more sensitive to mutational likelihoods under Evo 2. Scatter
represents median change in likelihood from WT to mutant sequence per species, colored by domain (C) or
kingdom (D); horizontal line indicates median of the scatter distribution. (E) We used a wide range of diverse
deep mutation scanning (DMS) assays to assess the Spearman correlation of zero-shot likelihoods from models
with experimental assays. (F) Schematic of our single-nucleotide resolution exon classifier based on embed-
dings from Evo 2. (G) We compared single-nucleotide resolution exon classifiers trained on embeddings from
Evo 2, Nucleotide Transformer (NT), or Evo 1 across eight held-out species, with performance measured by
area under the receiver operating characteristic curve (AUROC) in classifying exonic base pairs. (H) Genome
browser track showing predictions from the Evo 2 embedding-based exon classifier scanned across the human
STOMLZ2 locus, where the vertical axis is the predicted classifier score and the horizontal axis is genome po-
sition. (I) We used the mutational likelihood of premature stop codon insertions (as a genetic perturbation)
to use Evo 2 to predict genes as essential or nonessential, as determined by experimental gene essentiality
assays across bacterial and phage species (shown as overlaid scatter). (J) We used the mutational likelihood
of scrambled sequence (as a genetic perturbation) to use Evo 2 to predict human IncRNAs as essential (N =
46) or nonessential (N = 5,417) in all tested cell lines, as experimentally determined using IncRNA cellular
essentiality screens.
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2.2. Evo 2 predicts mutational effects on protein, RNA, and organismal fitness across all domains of
life

By learning the likelihood of sequences across vast evolutionary training datasets, biological sequence models
can learn how mutational effects correlate with biological functions without any task-specific finetuning or
supervision. This is referred to as zero-shot prediction. Previously, however, effective zero-shot mutational
effect prediction has been shown for language models trained only on protein sequences (Meier et al., 2021;
Notin et al., 2023) or genome language models trained only on prokaryotic sequences (Nguyen et al., 2024a).
Given that Evo 2 learns a sequence likelihood landscape across all three modalities of the central dogma (DNA,
RNA, protein) and all three domains of life (prokaryota, archaea, eukaryota), we sought to assess whether
Evo 2 enables mutational effect prediction across all of these modalities and organisms (Figure 2A).

Coding sequences across all domains of life follow a fundamental structure: they begin with a start codon
(Marcker and Sanger, 1964), end with a termination codon (Brenner et al., 1965), and are translated using
a triplet codon code that defines the reading frame (Nirenberg and Matthaei, 1961). To assess whether Evo 2
captures these core biological principles, we first evaluated how single nucleotide variants (SNVs) impact Evo
2 likelihoods in the genomic sequences around the start codons of protein-coding genes. We introduced these
mutations into the wildtype sequence at each position and calculated how the Evo 2 predicted likelihoods
changed across thousands of such loci (Figures 2B and S3A). We observed strong changes in the likelihood
for mutations within the start codons in both prokaryotic and eukaryotic species. This was followed by a
three-base periodicity pattern reflecting the triplet codons, with changes at the wobble positions showing
lower impact on likelihood. For both prokaryotic and eukaryotic genomes, we observed a pattern upstream of
the CDS that was consistent with conserved ribosome binding sites (Shine and Dalgarno, 1974; Kozak, 1989).
We also observed similar patterns for SNVs around stop codons (Figure S3B). These results confirmed that
the model had learned these fundamental genetic features across the domains of life, despite not having seen
any annotations of these sequences in its training data.

Beyond coding sequences, our current understanding of genomes presumes that specific genetic alterations
should result in differential phenotypic consequences. For example, non-synonymous mutations should be
more disruptive than synonymous ones, frameshifts and premature stop codons should be maximally disrup-
tive, and in essential noncoding elements, deletions should have greater consequences than those in intergenic
regions. By measuring the impact of a variety of mutations across both noncoding and coding sequences, we
sought to evaluate whether Evo 2 likelihoods capture these known priors (Figures 2C,D). Across 20 prokary-
otic species and 16 eukaryotic species, we observed changes in model likelihoods consistent with known biolog-
ical constraints. Within coding sequences, non-synonymous variations, premature stop codons, and frameshift
mutations caused much larger changes in likelihood than synonymous mutations. In noncoding regions, dele-
tions in tRNAs and rRNAs had significantly greater effects than deletions in intergenic and other noncoding
loci, reflecting the known essential roles of these RNAs. Interestingly, the 40B model exhibited higher sensi-
tivity to deletions in miRNA and snoRNA sequences compared to the 7B model (Figure S3C), suggesting that
larger models likely capture more nuanced regulatory features. Additionally, Evo 2 performance exceeds that
of other DNA language models on three recently published zero-shot evaluation tasks of human noncoding
regulatory sequences, demonstrating progress in modeling these notoriously “fuzzy” DNA elements (Figure
S3D) (Patel et al., 2024).

Recognizing that our training data contained genomes with distinct genetic codes, we also tested how
different premature stop codons impacted species that differed in their stop codon usage (Figure S3E). We
found that the model clearly learned the difference between the standard code (stop codons TAA, TAG, and
TGA), the mycoplasma code (Code 4, stop codons TAA and TAG), and the ciliate code (Code 6, stop codon
TGA). Interestingly, 4 to 8 kb context windows around the premature stop codons were necessary to correctly
identify the ciliate stop codon code, demonstrating the value of longer context windows for this task (Figure
S3F).

While Evo 2 predictions reflect the expected importance of different genetic alterations, a key question is
whether these likelihoods correspond to empirically measured functional effects. Deep mutational scanning
(DMS) provides a systematic framework for measuring the fitness impact of mutations across a wide range
of proteins and noncoding RNAs (ncRNAs). By comparing Evo 2’s zero-shot likelihoods to experimental mea-
surements from DMS, we found that Evo 2’s sequence likelihoods correlate with diverse definitions of fitness
for both prokaryotic and eukaryotic protein and ncRNA molecules (Figure 2E). Notably, Evo 2 is competitive
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with state-of-the-art autoregressive protein language models in predicting the fitness of both bacterial and
human proteins, and achieves state-of-the-art performance on noncoding RNA fitness prediction.

We also tested the ability for Evo 2 to predict mutational effects in protein sequences from viruses that
infect human hosts. We found no correlation between Evo 2 likelihood and viral protein fitness (Figure S2B).
This is consistent with our data exclusions having the intended effect of weakening both language modeling
performance (Figure S2A) and downstream prediction tasks.

Additionally, since Evo 2 is pre-trained on both DNA and RNA sequences, it has learned sequence features
that contribute to molecular fitness across both domains. Therefore, we expect that the likelihood scores as-
signed to RNA sequences by the model would be associated with their overall stability. To test this hypothesis,
we conducted a zero-shot evaluation by comparing the model-derived likelihoods for human mRNAs against
their average decay rates measured in an mRNA stability dataset. Consistent with an expected negative as-
sociation between model scores and mRNA decay, we found that among the evaluated models, only Evo 2
likelihoods were found to negatively correlate with the mRNA decay rates, with the 40B model showing a
stronger negative correlation than the 7B (Figure S3G).

Since Evo 2 learns from eukaryotic genomes, we assessed its ability to capture the canonical exonic and
intronic patterns that represent some of the fundamental building blocks of the genetic code. To do this,
we leveraged Evo 2 embeddings to develop a single-nucleotide resolution classifier of exon labels from ref-
erence annotations (Methods; Figure 2F). After optimizing small-scale classifiers on embeddings from each
model, we evaluated their performance across eight diverse species held out from classifier training. The
Evo 2 embedding-based classifier achieved superior performance to models trained on embeddings from Nu-
cleotide Transformer and Evo 1. Our classifier also had high accuracy on this task, with areas under the
receiver operating characteristic curve (AUROCs) ranging from 0.82-0.99 across species (Figure 2G). As an
example demonstration, we scanned the classifier across the human protein-coding gene locus of the STOML2
gene. The classifier’s probabilities showed strong correspondence with annotated exon locations, with distinct
transitions at exon-intron boundaries (Figure 2H). Using Evo 2 sequence embeddings, potentially combined
with bioinformatic approaches, may aid functional annotation of genetic components in poorly characterized
genomes.

Beyond molecular or gene-level prediction tasks, we previously showed that Evo 1 can predict mutational
effects on whole organism fitness in prokaryotes. Using zero-shot likelihoods to score the effects of premature
stop codon insertions into bacterial and phage genomes, we found that the Evo 2 models matched the perfor-
mance of Evo 1 in predicting gene essentiality across diverse essentiality studies (Figure 2I) (Zhang, 2004;
Piya et al., 2023). These results indicate that Evo 2, even after expanding its scope to incorporate eukaryotic
training data, has retained its predictive performance in prokaryotic tasks.

Expanding our analysis to whole organism fitness effects in eukaryotes, we evaluated Evo 2’s ability to
predict noncoding gene essentiality in human cells. Using data from a recent long noncoding RNA (IncRNA)
essentiality study (Liang et al., 2024), we found that both Evo 2 models substantially outperformed Nucleotide
Transformer and other sequence-based metrics when assessing the impact of artificial disruptions—specifically,
by scrambling 100 bp subsequences within the IncRNA gene (Figure 2J). This enhanced predictive perfor-
mance was consistently observed across the five cell lines tested in the original study and was even more
pronounced for IncRNAs deemed essential in multiple cell lines (Figure S3H,I), indicating that Evo 2 effec-
tively captures the breadth of fitness contributions from functional IncRNAs.

In total, these results demonstrate that Evo 2 has captured a remarkable breadth of information across
biological modalities and domains of life. Notably, the 7B and 40B models expand predictive capabilities
without compromising the prokaryotic insights captured by Evo 1. The utility of both zero-shot likelihoods
and simple classifiers trained on Evo 2 embeddings for a variety of predictive tasks across prokaryotic and
eukaryotic genomes indicates that Evo 2 provides a strong foundation model for many downstream applications
in computational biology.

2.3. Evo 2 enables accurate human clinical variant effect prediction

Variant effect prediction (VEP) evaluations have emerged both as a foundational application of and litmus
test for genome language models (Benegas et al., 2025; Ji et al., 2021; Dalla-Torre et al., 2024), assessing
their ability to capture functional constraints, predict pathogenicity, and generalize across diverse genomic
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Figure 3 | Evo 2 enables accurate human clinical variant effect prediction. (A) Overview of zero-shot
variant effect prediction using Evo 2. Evo 2 assigns likelihood scores to human disease variants, distinguishing
pathogenic and benign variants in both coding and noncoding regions. (B, C) Zero-shot evaluation of variant
pathogenicity within the coding (B; N = 14,319 SNVs, N = 1,236 non-SNVs) and noncoding (C; N = 34,761
SNVs; N = 3,894 non-SNVs) regions. Shown are the AUROCs and AUPRC:s for classifying pathogenic and
benign variants, from ClinVar, across models. For non-SNV evaluations, we used a modified version of PhyloP
(Methods). (D) Zero-shot evaluation on splice-altering variants in SpliceVarDB, split by exonic (N = 1,181)
and intronic (N = 3,769) scoring. (E) Model predictions evaluated against BRCA1 saturation mutagenesis
data, comparing classification of loss-of-function (LOF) versus functional/intermediate variants in both coding
(N = 2,077 SNVs) and noncoding (N = 1,125 SNVs) regions. (F) Evo 2 zero-shot likelihood scores plotted
for LOF versus functional/intermediate variants (N = 3,893), demonstrating the model’s ability to separate
these classes. P-value calculated by two-sided Wilcoxon rank sum test. (G) A schematic for supervised variant
effect prediction classifiers: Evo 2 embeddings are extracted and concatenated to train a supervised classifier
for BRCA1 variant effect prediction. (H) Predictions of the supervised classifier on functional/intermediate
variants compared with true LOF variants on the test set (N = 779), with prediction scores on the horizontal
axis. P-value calculated by two-sided Wilcoxon rank sum test. (I) Comparing a supervised version of Evo 2 on
the BRCA1 test set against zero-shot baselines and AlphaMissense shows the value of using Evo 2 embeddings
for predictive models.
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contexts. Genome language models can perform variant effect predictions for both coding and noncoding
DNA, zero-shot, by considering the predicted changes in sequence likelihoods.

We benchmarked the performance of Evo 2 against the annotations of experimental and clinical variants
to assess its ability to predict biologically significant sequence variation. We first investigated the ability of
Evo 2 to predict the pathogenic effects of human genome variants across diverse variant classes (Figure 3A).
Specifically, we compared the zero-shot performance of both Evo 2 models with several other models, including
state-of-the-art VEP models such as AlphaMissense (Cheng et al., 2023) and GPN-MSA (Benegas et al., 2025),
in predicting pathogenic ClinVar variants (Figure 3B, Table S7). For single-nucleotide variants (SNVs) in
coding regions, the 40B and 7B models ranked fourth and fifth, respectively, behind AlphaMissense, ESM-1b,
and GPN-MSA. For coding variants that were not SNVs (e.g., insertions and deletions), which models such as
AlphaMissense and GPN-MSA fail to evaluate, both Evo 2 models outperformed the other models in zero-shot
classification. For noncoding variants, Evo 2 also surpassed other models for both SNVs and non-SNVs (Figure
30).

Although ClinVar is a valuable benchmark, its coverage is biased toward well-studied variants that often
have established clinical significance. To evaluate model performance on a broader and potentially more
challenging set of functional noncoding variants, we turned to SpliceVarDB, a repository of experimentally
validated splicing effects. For both exonic and intronic splice variant effect prediction, Evo 2 models achieved
the highest zero-shot performance (Figure 3D). Together, these results highlight the competitive performance
of Evo 2 in predicting the pathogenic effects of human coding SNVs against specialized models like AlphaMis-
sense and GPN-MSA, while establishing a new state of the art for zero-shot scoring of non-SNV, noncoding,
and splice-associated variants.

To further limit curation bias and incomplete experimental coverage of coding and noncoding variants,
we focused on a dataset measuring functional consequences of variants across both coding and noncoding
regions of the BRCAI gene (Findlay et al., 2018). Similar to our previous observations, zero-shot predictions
with Evo 2 performed strongly for coding SNVs and set a new state-of-the-art for BRCAI noncoding SNVs.
Importantly, it outperformed all other models when coding and noncoding variants were evaluated combined
together (Figures 3E and S4A).

A recently released BRCA2 variant dataset with experimental measurements allowed us to extend this
analysis to BRCA2 (Huang et al., 2025). Consistent with our findings for BRCAI, Evo 2 surpassed existing
benchmarks from specialized models like GPN-MSA when predicting coding and noncoding variants together
(Figure S4B). This strong performance on scoring both coding and noncoding variants for BRCA1 and BRCAZ2,
along with Evo 2’s robust results on non-SNV benchmarks, indicates that Evo 2 is a well-calibrated zero-shot
predictor of a diverse range of functional human variants. This is particularly important given that many
noncoding variants are routinely excluded from variant analysis reports. Notably, the only human genome in
OpenGenome?2 is the reference genome, and Evo 2 achieves this zero-shot performance without any human
variant training, instead leveraging multi-species variation as a proxy for evolutionary constraints.

While zero-shot evaluation provides an initial measure of a model’s inherent ability to predict functional
effects (Figure 3F), the model-derived embeddings can also be leveraged in supervised classifiers to system-
atically refine predictions by learning task-specific decision boundaries, potentially enhancing sensitivity and
specificity. To demonstrate this, we evaluated a supervised deep neural network trained specifically on BRCA1
variants to see whether it could outperform zero-shot methods, thereby illustrating the potential of Evo 2 as a
foundation for improved variant classification models (Figure 3G). Because different layers of large language
models encode different levels and types of abstraction, we systematically extracted sequence embeddings
from each block of the Evo 2 40B model to determine which layer provided the most relevant information for
variant classification (Methods; Figures S4C,D).

Our best-performing supervised model achieved a clear separation between loss-of-function variants and
all other variants (Figure 3H), outperforming all benchmarks on the BRCA1 coding SNV test set (AUROC =
0.94, AUPRC = 0.84) (Figure 3I). The model also excelled for all BRCA1 SNVs in the test set (AUROC = 0.95,
AUPRC = 0.86) (Figure S4E). These results further underscore how Evo 2 embeddings can be harnessed to
train models aimed at more specialized tasks, including those of high clinical relevance.

Our evaluations across ClinVar, SpliceVarDB, and BRCA1,/2 variant datasets demonstrate that Evo 2 models
achieve state-of-the-art performance for noncoding variants while remaining competitive on coding variants.



https://doi.org/10.1101/2025.02.18.638918
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.18.638918; this version posted February 21, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Their zero-shot capability highlights the strength of their learned sequence representations, and leveraging
these representations in a supervised setting illustrates how they can serve as a powerful foundation for down-
stream variant effect prediction tasks. In sum, these findings confirm the versatility of Evo 2 as a genome-scale
language model for both unsupervised and supervised applications, offering a robust framework for variant
interpretation across diverse genomic contexts.

2.4. Feature interpretation in Evo 2 from molecular to genome scale

Evo 2 learns complex representations of genomic sequences without relying on explicit biological labels or an-
notations. Contrary to the common critique of large language models as black box systems, recent advances in
mechanistic interpretability have demonstrated that sparse autoencoders (SAEs) can reveal latent dimensions
that correspond to semantically meaningful features in natural language (Cunningham et al., 2023; Bricken
et al., 2023; Templeton et al., 2024). To probe what Evo 2 is capturing, we trained SAEs on its represen-
tations, or neuron firing patterns, to decompose the model into sparse, high-dimensional representations in
which individual latent dimensions often exhibit human-interpretable patterns (Figures 4A).

We trained a Batch-TopK SAE (Bussmann et al., 2024) on Evo 2’s representations at layer 26, as prelim-
inary analysis indicated that most features of interest were represented at this point (Figure S5). The SAE
was trained on representations from 1 billion tokens evenly split across complete eukaryotic and prokaryotic
genomes (Figures S5A,B). We found alignments between learned SAE latent dimensions, also known as fea-
tures, and known biological concepts by finding features that were enriched in sequence segments containing
a particular biological concept of interest, a process we refer to as contrastive feature search (Figure S6A).

A close inspection of the learned latent dimensions revealed diverse features that not only align with
known biological concepts and genomic building blocks but also capture evolutionary signals embedded within
genomes. For example, we made the intriguing observation that Evo 2 has developed internal representa-
tions capturing evolutionary signatures of mobile genetic elements. Feature f/19746 is closely associated with
prophage regions across prokaryotes (Figure S6B) and activates on annotated prophages in the E. coli genome
including the cryptic prophage CPZ-55 (Figure 4B). We further observed that this feature activates on spacer
sequences within a CRISPR array, which are integrated during CRISPR adaptation from foreign genetic mate-
rial such as phage DNA (Figure 4B), as well as after the last CRISPR direct repeat and on synthetic, scrambled
spacer sequences, suggesting that Evo 2 associates CRISPR spacers with phage sequences as opposed to di-
rectly memorizing phage sequences (Figures 4B and S6C). This feature also activated on other regions not
annotated as phage by geNomad (Camargo et al., 2024) which contained genes associated with prophages
such as integrases and invertases (Figure S6D). Together, these results highlight the potential for mechanis-
tic interpretability of biological language models to enhance genome annotation and to mine for unexplored
biological systems.

Next, we sought to identify features that are associated with canonical biological annotation types that
reflect genome organization. Through contrastive feature search, we identified diverse features corresponding
to open reading frames (ORFs), intergenic regions, tRNAs, and rRNAs in the E. coli genome (Figures 4C and
S6E,F). Since these genomic sequences also encode proteins, we further probed for structural signatures at
the protein level. Encouragingly, we also identified features linked to protein secondary structures such as
a-helices and B-sheets (Figures 4D and S6G). These associations highlight the multimodal nature of genome
language modeling, capturing higher-order structural information beyond the level of DNA alone.

We extended our analysis from E. coli to the human genome in search of features that capture the unique
regulatory and coding complexities of eukaryotes. By introducing mutations into thousands of human coding
sequences and applying contrastive feature search on a eukaryotic-only SAE, we identified a mutation-sensitive
feature (f/24278) that preferentially activates on frameshifts and premature stop mutations (Figures 4E and
S7A,B). This suggests that Evo 2 contains latent features beyond simple gene structure that can inform on
mutational severity. In addition, with the layer 26 mixed prokaryotic-eukaryotic SAE, we observed other
activations on DNA motifs in the promoter region of human genes (Figure 4F, left) that closely resemble the
known binding sites of human transcription factors (Figure 4F, right) (Vorontsov et al., 2023). Collectively,
these results suggest that Evo 2 not only recognizes coding sequences but also discerns regulatory elements
through distinct internal representations.

Finally, we also identified features closely associated with the exon and intron architecture of the hu-
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Figure 4 | Mechanistic interpretability of Evo 2 reveals DNA, RNA, protein, and organism level features.
(A) Sparse autoencoders (SAEs) were trained on Evo 2 to extract SAE features associated with interpretable
biological function that can be used for annotation, discovery, and steering of sequence generations. (B)
Phage-associated feature activates preferentially on RefSeq-annotated prophages (left and top right) in the E.
coli K12 MG1655 genome and fires on phage-derived spacer sequences within CRISPR arrays (bottom right).
(C) Activations of features associated with open reading frames (ORFs), intergenic loci, tRNAs, and rRNAs,
in a 100 kb region in E. coli K12 MG1655. (D) Activations of features associated with a-helices, -sheets,
and tRNAs at an E. coli K12 MG1655 locus containing tufB and a tRNA array ending with thrT (left) and the
rpoB-rpoC locus (right). AlphaFold 3 (AF3) structure predictions with feature activations overlaid, of EF-Tu
in complex with thrT tRNA (left) and of RpoB and RpoC in complex (right). (E) A feature in the human
genome preferentially activates immediately after frameshift mutations over less deleterious mutation types.
(F) Features activating on DNA motifs in the human genome that correspond to transcription factor-binding
motifs. (G) Features associated with exons, introns, and their boundaries in the human genome can be used

to annotate the woolly mammoth genome.
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man genome, including features that activate preferentially on coding regions (f/15680), introns (f/28339),
the first bases of an exon following an intron (f/1050), and the last base of an exon followed by an intron
(f/25666) (Figure S7C-E). The coding region feature also activates on bacterial ORFs, suggesting a learned
universal representation of coding sequences (Figure S6E,F). To assess whether these features more broadly
generalize beyond the human genome, we next applied them to annotate the genome sequence of the woolly
mammoth (Figure 4G) (Sandoval-Velasco et al., 2024), which was not present in Evo 2’s training corpus. The
successful mapping of exon-intron architecture in the woolly mammoth genome underscores the robustness
and generalizability of these latent features.

Overall, we demonstrate that Evo 2 latent representations capture a broad spectrum of biologically rel-
evant signals, from mobile genetic elements and regulatory motifs to protein secondary structure and mu-
tational severity. Since conceptual features for natural language can capture abstract concepts, other Evo
2 SAE features likely represent more complex biological patterns (Figure S5E). To enable the community
to explore these higher-order concepts that bridge mechanistic interpretability with biological mechanisms,
we release an accompanying visualization tool for Evo 2 mechanistic interpretability across 104 genomes at
https://arcinstitute.org/tools/evo/evo-mech-interp.

2.5. Genome-scale generation across the domains of life

Evo 2 is fundamentally a generative model trained to predict the next base pair in a sequence. We sought to
generate DNA sequences from different organsism with Evo 2 and assess the quality (Figure 5A). In previous
work, we demonstrated that the first-generation Evo models can respond to prompt sequences to design and
diversify novel biological sequences (Merchant et al., 2024). To evaluate Evo 2’s ability to respond to genomic
prompts, we first assessed performance across six phylogenetically diverse species, spanning archaea, prokary-
otes, and four eukaryotic lineages (fungi, protists, plants, and animals). For each species, we selected highly
conserved representative genes and provided Evo 2 with a context consisting of 1,000 base pairs of upstream
sequence plus the first 500-1000 base pairs of the target gene. We found that Evo 2 achieves high accuracy
in gene sequence completion, indicating that the model responds to prompts to enable in-context sequence
design. Amino acid recovery improved with scale, and Evo 2 40B and 7B demonstrated improved performance
compared with Evo 1 (Figures 5B. Importantly, Evo 2 also maintained consistently high sequence recovery
throughout the context extension midtraining phase (S8A).

Consistent with poor performance on the language modeling task and on function prediction downstreams
for viruses that infect humans, Evo 2 also has poor performance on generating proteins from human viruses
(Figure S2C). Even when directly trying to elicit a viral protein, Evo 2 had essentially random performance
in sequence recovery, effectively preventing Evo 2 from human viral generation.

To test Evo 2’s ability to perform generation at the scale of entire genomes, we first used it to generate
mitochondrial DNA and assessed its ability to produce all of the known components of natural mitochondria.
The human mitochondrial genome (~16 kb) encompasses 22 tRNA genes, 13 protein-coding genes, and 2
rRNA genes, whose protein products form complexes with nuclear-encoded proteins. We prompted Evo 2 40B
with portions of human mitochondrial DNA, generating 250 unique mitochondrial sequences of 16 kb each
(Methods).

We found that Evo 2 can generate mitochondrial genomes with the correct number of coding sequences
(CDS), tRNA, and rRNA genes when annotated using MitoZ (Meng et al., 2019) (Figure 5C). A BLASTp anal-
ysis revealed that Evo 2 created diverse mitochondrial genes, with varying degrees of sequence identity to
natural mitochondrial proteins (Figure 5D). Notably, individual genes showed highest homology to different
organisms ranging from fish to mammals (Table S6), highlighting Evo 2’s ability to generate diverse com-
binations of genes. The generated sequences also maintained proper synteny (Figure 5E) while exhibiting
considerable sequence diversification when compared to native sequences. Using AlphaFold 3 for protein mul-
timer prediction, we found that the generated sequences formed structures matching expected mitochondrial
protein complex folds and interactions (Figures 5F and S8B,C).

We then leveraged Evo 2’s million-base-pair context window to generate DNA sequences at the same scale
as small prokaryotic genomes. For this task, we focused on M. genitalium, a model system of a minimal prokary-
otic genome due to its short genomic length of ~580 kb (Gibson et al., 2008; Karr et al., 2012). Using the first
10.5 kb segment from the M. genitalium reference sequence as prompts, we generate ten genomes. We then
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(A) We used Evo 2 to generate chromosome- and genome-scale sequences using unconstrained autoregressive
generation. We prompted the model with portions of the H. sapiens mitochondrial genome, M. genitalium
genome, and S. cerevisiae chromosome III and generate DNA sequences with similar lengths as those of the
native sequence. (B) We prompted Evo 2 with genomic context as well as a portion of a highly conserved pro-
tein and generate, measuring the sequence recovery of the Evo 2 generated gene against the natural gene. (C)
Predicted rRNA, CDS, and tRNA counts in Evo 2 generated mitochondrial sequences using MitoZ compared
with the natural H. sapiens mitochondrial genome values. (D) Query cover versus sequence identity of gen-
erated mitochondrial sequences against nucleotide BLAST hits in the core_nt database with expect threshold
of 0.05. (E) Visualizations of Evo 2 generated sequences when prompted with a 3 kb sequence from the H.
sapiens mitochondrial genome, demonstrating variation that still retains natural synteny patterns of coding
sequences. (F) AlphaFold 3 structure predictions of multimeric complexes from an Evo 2-generated mitochon-
drial genomes, labeled by the sequence similarity of Evo 2-generated proteins to natural proteins based on a
BLASTp query. (G) We prompted Evo 2 with the beginning of the M. genitalium genome and generated ~600
kb long sequences. Genes are annotated with Prodigal and colored based on statistically significant sequence
similarity to natural proteins (HHpred E-value < 0.001). (H) The fraction of Prodigal annotated genes with
HHpred hits between Evo 2 40B and M. genitalium generated by Evo 1. (I) Distribution of Prodigal annotated
genes from Evo 2 generated M. genitalium compared with the natural genome. (J) Distribution of secondary
structure from Evo 2 generated proteins compared to natural M. genitalium. (K) AlphaFold 3 structure pre-
dictions of example proteins found on Evo 2-generated prokaryotic genomic sequences show high structural
similarity to natural proteins while diversifying the sequence composition. (L) The native genome sequence
from S. cerevisiae chromosome III and an Evo 2-generated DNA sequence of similar length, which was gener-
ated by prompting the model with a 10 kb sequence from S. cerevisiae chromosome III, are visualized alongside
predicted homologous yeast gene, exon, promoter, and tRNA annotations.

performed HHpred analysis of Prodigal-predicted ORFs against the Pfam database and found that nearly 70%
of Evo 2 40B genes contained significant Pfam hits, a marked improvement over Evo 1 131k (18%) (Figure
5G,H). Further, quality assessment of the generated proteins using ESMFold metrics, secondary structure
distribution, and protein sequence identity demonstrated that the generated sequences had properties consis-
tent with natural protein distributions, suggesting successful recapitulation of native features despite the long
generation length (Figure 5I-K).

To assess Evo 2’s eukaryotic sequence generation capability, we prompted Evo 2 with 10.5 kb from S. cere-
visiae chromosome III (~316 kb in length) to generate 330 kb of DNA. Evo 2 successfully generated eukaryotic-
like DNA sequences with predicted tRNAs, appropriately positioned promoters, and genes exhibiting intronic
structure (Methods; Figures 5L and S8F). Furthermore, generated proteins showed sequence and structural
(Figure S8G-I) similarity to natural yeast genes (Figure S8I), highlighting Evo 2’s ability to generate realistic
eukaryotic coding sequences.

While the density of tRNA and gene features was below those found in the native yeast genome (Figures
5L and S8G), we note that these genome sequences were produced by simple, unconstrained autoregressive
generation. Improvements in the naturalness of generated genomes can most likely be addressed through
optimized inference strategies or model improvements. Moreover, as demonstrated in our previous study
(Merchant et al., 2024), genomic sequences with no significant sequence similarity to natural sequences could
still be semantically valid and retain function.

Together, our results demonstrate that Evo 2 is able to generate DNA sequences that resemble organelle,
prokaryotic, and eukaryotic genomes. These generated sequences contain both coding and noncoding ele-
ments, with diverse yet realistic genes that maintain both structural and sequence similarity to natural se-
quences.

2.6. Generative epigenomics via inference-time search

Beyond unconstrained autoregressive generation, we also sought to achieve guided generation of long genomic
sequences with Evo 2. Eukaryotic genomes regulate gene expression through a complex system of chemical
and protein-mediated modifications referred to as the epigenome. An important component of epigenomic
regulation involves modifying the openness or compactness of chromatin, which in turn controls which DNA
regions can be accessed by transcriptional machinery. Chromatin accessibility is modulated by both DNA
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Figure 6 | Generative epigenomics via inference-time search. (A) We designed multi-kilobase sequences
of DNA where we sought to control both the location and length of chromatin-accessible regions. These
are often visualized as “peaks” indicating the degree of chromatin accessibility at a given position in the
genome. (B) We use autoregressive generation with Evo 2 to sample multiple 128-bp chunks of DNA given the
same genomic prompt. We then use Enformer and Borzoi to predict how these chunks affect the chromatin
accessibility profile of the generated sequence and score these profiles based on how well they match a desired
peak pattern. Chunks that have the most desirable accessibility profiles are retained by appending to the
prompt and generation proceeds to the next step, using a beam search algorithm to keep track of the best
generated sequences. (C) Design runs corresponding to different peak patterns are plotted on the horizontal
axis according to the total number of tokens sampled during the design process normalized by the length of
the design in base pairs (e.g., standard autoregressive decoding would be 1 tok/bp). On the vertical axis,
design runs are plotted by using the AUROC, which quantifies how well predicted accessibility profiles can
distinguish our desired open- versus closed-chromatin genomic positions. As more tokens are sampled by the
model, i.e., as more compute is used, designs more closely adhere to the specified peak pattern. (D) Two
different peak patterns were designed with varying total compute budgets, with more compute leading to
clearer designed peaks. (E) Controlling the position and width of chromatin accessibility enables us to encode
Morse code messages in the epigenome. Generated DNA sequences replace the native sequence at chrX:
52,051,929-52,123,468 in the mouse genome and are scored by the predicted DNase hypersensitivity tracks
in 129 ES-E14 cells according to Enformer and Borzoi. (F) Sampled sequences have similar dinucleotide
frequencies as the baseline frequencies found in the mm39 reference genome. (G) The general paradigm
of guiding a capable generative model with a sequence-to-structure or sequence-to-function model extends
beyond chromatin accessibility design, enabling many complex biological design applications.
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sequence composition and aspects of cellular state (Brownell et al., 1996; Allis and Jenuwein, 2016).

Generating DNA sequences to have desirable chromatin accessibility profiles would allow generative ge-
nomics to design an important mechanism of functional control found in natural eukaryotic genomes and
enable “generative epigenomics.” We therefore aimed to develop an approach that uses Evo 2 to generate
DNA sequences for which we can specify both the location and the length of chromatin-accessible regions
(Figure 6A). For the design tasks in this study, we focus on a binary specification of chromatin accessibility in
which we aim to maximize accessibility in some genomic regions and minimize accessibility in other regions.

Although Evo 2 has no explicit mechanism for conditioning its generations based on epigenetic state, several
models such as Enformer (Avsec et al., 2021) and Borzoi (Linder et al., 2025) demonstrate accurate, held-out
performance in predicting chromatin accessibility profiles from DNA sequence across cell types from human
and mouse. However, models like Enformer and Borzoi are not trained as generative models and assume that
their sequence inputs come from natural genomes. Evo 2 captures complex rules across mammalian genomes
(Figures 2 and 3) and is a powerful generative model that can be used to propose diverse sequences while
retaining biological “naturalness” (Figure 5).

To achieve controllable design of chromatin accessibility, we therefore used an ensemble of Enformer and
Borzoi to guide autoregressive generation with Evo 2 (Figure 6B). Rather than selecting designed sequences
solely based on language-model likelihood, we implemented a scoring function that accepts or rejects gen-
erated sequences based on how well their predicted chromatin accessibility (using a consensus of Enformer
and Borzoi) matches a desired pattern. Instead of sampling a full, multi-kilobase design and then evaluating
its predicted chromatin accessibility, we improve the efficiency of the design process by conducting a beam
search that scores partial generations; in particular, we reevaluate Enformer and Borzoi after each new 128-bp
of sampled sequence and only continue autoregressive generation off of the most promising sequences (Figure
6B).

We used both Enformer and Borzoi to score our generated DNA sequences in the context of the mouse
genome by replacing chrX: 52,051,929-52,123,468 with the designed sequence. We scored chromatin acces-
sibility using the DNase hypersensitivity tracks in 129 ES-E14 cells according to Enformer and Borzoi, where
Borzoi itself consists of four separate models that we ensemble alongside Enformer. Additional details of the
generation pipeline are provided in Methods.

We first observed that increasing the width of this beam search (i.e., by sampling a greater number of 128-
bp chunks given the same prompt and generating off of only the top-scoring chunks) resulted in a substantial
improvement in design success (i.e., how well the final chromatin accessibility profiles matched the desired
pattern). We use the AUROC metric to quantify how well the continuous-valued Enformer and Borzoi predic-
tions separate regions or open or closed chromatin as specified by our design patterns. Across a diverse set of
patterns, we observed that sampling 30 or more 128-bp chunks and selecting the top two chunks at each step
of the beam search was sufficient to achieve final designs with AUROCs around 0.9. We observed a predictable
log-linear relationship in which increasing the beam search width, and thereby increasing inference-time com-
pute, resulted in better-quality designs (Figure 6C). When visualizing the Enformer and Borzoi predictions,
we observed clear predicted peaks, indicating high chromatin accessibility, only in regions specified by our
design patterns (Figure 6D).

To demonstrate the generality of this approach, we varied the length and location of designed peaks in
order to write simple messages in Morse code, where narrow peaks indicate dots, wide peaks indicate dashes,
and inaccessible regions indicate spaces. Our designed messages include “LO” (the first message transmitted
over the Internet and the first word in Edmund Spenser’s The Faerie Queene), “ARC” (the name of the re-
search institute in which this design run was conducted), and “EVO2” (the name of the model). We observed
consistently strong design success in encoding these diverse messages (Figure 6E).

Importantly, using a capable generative model to propose sequences results in designs that have favor-
able properties that we did not directly optimize for. For example, because we prompted the model with the
genomic context from the mouse genome, the dinucleotide frequencies observed in our designed sequences
match those of the mm39 reference genome (Figure 6F). We also observed that all predictions in the ensem-
ble of Enformer and Borzoi models largely reach a consensus prediction (Figures 6D,E). In contrast, when
we repeated the same design pipeline except with a uniform proposal replacing Evo 2, we observed subopti-
mal token-matched inference-time scaling, unnatural dinucleotide distributions, and poor consensus among
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predictions across the Enformer and Borzoi ensemble, potentially indicating adversarial sequence examples
(Figure S9).

This design task shows how Evo 2 can be coupled with sequence-to-function models to achieve controllable
design of complex properties. In doing so, we demonstrate a clear relationship in which increasing inference-
time compute predictably improves performance on a complex design task (Figure 6C), which is to our knowl-
edge the first example of such a result for biological language modeling. We also show how allowing the model
to propose alternative designs guided by a scoring function can efficiently sample from a functionally complex
sequence space. Finally, we note that this paradigm is not exclusive to designing chromatin accessibility. We
envision that other models that predict biological structure or function given genomic sequence could also be
used to guide Evo 2’s generations (Figure 6G), enabling biological design in any downstream application for
which there exists a capable predictive model.

3. Discussion

This work demonstrates that a generative model of the underlying genomic language enables a machine learn-
ing model to achieve generalist prediction and design capabilities across all domains of life. By learning sta-
tistical properties of DNA across 9 trillion tokens of genomic sequences, Evo 2 can predict mutational effects
on protein function, ncRNA function, and organismal fitness. Evo 2 is the first alignment-free language model
that robustly predicts the pathogenicity of different mutation types in ClinVar, including indels, achieving
state-of-the-art performance for noncoding and splice variants. Moreover, by leveraging Evo 2 embeddings
in supervised classifiers, we achieve state-of-the-art performance in classifying BRCAI breast cancer variants
across all mutational types. Evo 2 is capable of genome-length sequence design at the scale of whole human
mitochondrial genomes, minimal bacterial genomes, or yeast chromosomes. We also show that generation
with Evo 2 can produce complex epigenomic patterns via inference-time search. In doing so, we also show
that increasing inference-time compute can predictably improve performance on a complex design task. We
note that all of these tasks are enabled by a single model.

To understand the basis for Evo 2’s strong zero-shot performance, we applied mechanistic interpretability
methods for identifying representational features by decomposing Evo 2’s learned representations with sparse
autoencoders (SAEs). Without any explicit biological labels, we report the first examples of SAE features
that correlate with diverse elements such as exons, introns, and transcription factor motifs. We also uncov-
ered molecular-level features corresponding to protein secondary structure and organismal-level features that
correspond to prophage regions in bacterial genomes. Finally, the evolutionary links captured by these fea-
tures allow for the genomic annotation of extinct species, which we demonstrated on a portion of the woolly
mammoth genome.

Developing Evo 2 required significant investment in machine learning research and engineering. We over-
came many important challenges when training and evaluating Evo 2 at scale, including sharding and syn-
chronizing model parameters across tensor, pipeline, context, and data parallel ranks; coordinating events
across distributed processes; developing new algorithms and a new architecture to achieve high working uti-
lization of theoretically available GPU compute at datacenter scale; verifying numerical precision across model
versions; and engineering a multi-GPU inference stack. We also tested diverse compositions of the pretraining
data and found that naive long-context training across raw eukaryotic reference genomes, which mostly con-
sist of noncoding regions, led to poor performance on downstream tasks. Instead, we trained Evo 2 on DNA
tokens with high information content, including increasing the composition of training data within or near
genic regions. By combining computational engineering and high-quality data curation at massive scale, we
were able to achieve the generalist prediction and design capabilities of Evo 2.

Alongside this paper, we freely release a number of resources for the scientific community. Under an open-
source license, we make available (i) the model parameters for Evo 2 7B and 40B, (ii) code that implements
distributed pretraining and context extension of Evo 2, (iii) code that implements inference of Evo 2, and (iv)
the full OpenGenome2 dataset used to train Evo 2 (Data availability, Code and model availability). We
also release a tool for generating and scoring sequences with Evo 2 in a simple web interface at https://
arcinstitute.org/tools/evo/evo-designer and a tool for exploring SAE features alongside genomic
annotationsathttps://arcinstitute.org/tools/evo/evo-mech-interp. To our knowledge, Evo 2 is
one of the largest-scale fully open models to date (including training and inference code, data, and parameters)
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even across other modalities such as language and vision.

Biological foundation models capable of intelligently composing novel systems will advance biomedical
innovation, but as with other new biotechnologies, may also raise safety, security and ethical considerations.
Aligned with the Responsible Al x Biodesign commitments (Responsible Al x Biodesign, 2024), we preemptively
assessed and mitigated potential concerns prior to open source publication. Fully open source models enable
researchers to interrogate, reproduce, and build upon Al advances. They may also be used by a broad range
of actors in unanticipated ways that could lead to accident or misuse risks, as noted by experts following the
publication of Evo 1 (Bloomfield et al., 2024). We collaborated with these multidisciplinary experts to reduce
risks via data exclusion measures (Methods), safety and security evaluations, and population bias evaluations.
By excluding genomic sequences of viruses that infect eukaryotes from our training data, we aimed to ensure
our openly shared model did not disseminate the capability to manipulate and design pathogenic human
viruses. Task-specific post-training may circumvent this risk mitigation measure and should be approached
with caution. Our data exclusions had the intended outcomes of weakening language modeling performance
(Figure S2A) and downstream mutational effect prediction (Figure S2B) on human viruses. Red teaming
to directly elicit pathogenic human viral proteins showed generations were effectively random in this domain
(Figure S2C). The inclusion of eukaryotic data also introduced the promising possibility of using Evo 2 to aid in
the interpretation of human genetic variants. We queried whether Evo 2’s population-free design (Pathak et al.,
2024) mitigated ancestry biases in model predictions, showing that Evo 2 generalizes comparably well across
human populations (Figure S2D). Few examples of empirical risk assessment of biological foundation models
exist; this work represents one of the most comprehensive evaluative efforts that considers both precaution
and access to date. However, further research is needed to expand the suite of available evaluations and risk
mitigation approaches.

Looking ahead, we anticipate diverse strategies for improving the quality of Evo 2’s predictions and designs.
Evo 2 likely emphasizes the general evolutionary distribution of genomic sequences over specific taxonomies.
Combining Evo 2 with additional features and population-scale human genomic variation (Schubach et al.,
2024; Cheng et al., 2023) could enable improved pathogenicity prediction or analysis of structural variation.
Leveraging mechanistic interpretability, learned features could also enhance the detection of more complex
biological concepts and guide model generations through activation steering and feature clamping (Templeton
et al., 2024), enabling programmable control of generations. Supervised finetuning or reinforcement learning
with experimental feedback may be needed to improve the quality of Evo 2’s generated functions. Designing
complex biological systems via inference-time compute, for which we provide an initial proof-of-concept in
this study, could also generalize to include other properties such as alternative splicing, cell type specificity,
or gene circuit functionality.

Evolution represents a unifying theory of biology from genes to populations and transmits the functional
effects of natural selection through the foundational information layer of DNA. The Evo series of models lays
the groundwork for biological modeling and design that unifies the diverse length scales of biology with a
common representation. Future work that integrates this representation with additional modalities such as
epigenomic and transcriptomic information could produce a virtual cell model that productively simulates
complex cellular phenotypes in health and disease.
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4. Methods

4.1. Training Evo 2

Evo 2 is trained using next-token-prediction on the byte-tokenized OpenGenome2 dataset. We train Evo 2 in
two phases: a pretraining phase at 8192 token context focused more on functional elements and midtraining
phase during which we extend up to 1M token context length with more entire genomes in the data mix. Evo
2 40B’s pretraining stage is further split into two stages, first training at 1024 context for 6.6T tokens before
extending to 8192 context for 1.1T tokens. Additionally, we train and release a smaller, Evo 2 1B base at 8192
context length for 1T tokens. For efficiency, Evo 2 is trained using sequence packing.

Table 1 provides an estimate of training FLOPS for Evo 2 40B and other large models spanning application
domains of biology and natural language. We include Pythia Large (Biderman et al., 2023), OLMo 2 Large
(Team OLMo et al., 2024), Evo 1, Falcon 1 180B Almazrouei et al. (2023), StarCoder 2 (Lozhkov et al., 2024),
DeepSeek V3 (Liu et al., 2024), Llama 3.1 Large (Dubey et al., 2024), ESM 3 Large (Hayes et al., 2025) and
xTrimo (Chen et al., 2024).

Model Model Size Tokens FLOPS est.

Fully open: data, infrastructure, weights

Evo 2 40B 40.3B 9.3T 2.25x 10%*
Pythia Large 12B 300B 2.16 x 10?2
OLMo 2 Large 13B 5.6T 4.37x10%

Open data, weights

Evo 1 7B 300B 1.26 x 1022
Falcon 180B 180B 3.5T 3.78x102*
StarCoder 2 15B 15B 43T 3.87x10%

Open weights only
DeepSeek V3 37B (671B total) 14.8T 3.28 x 10**

Llama 3.1 Large 405B 15T 3.64 x 10%°
Closed

ESM 3 Large 98B 771B  1.07 x 10%*
xTrimo Large 100B 1T  6.00 x 10%®

Table 1 | Comparison of training FLOPS across flagship language and biology models, showing Evo 2 as the
largest fully open model. FLOPS are estimated without accounting for mixed-precision or pretraining context
length.

4.1.1. Model architecture

Evo 2 uses StripedHyena 2 (Ku et al., 2025), the first multi-hybrid architecture based on input-dependent
convolutions (Poli et al., 2023; Nguyen et al., 2024b). Multi-hybrids combine various different operators to
balance model quality with training and inference efficiency, in line with findings of Poli et al. (2024) and
Thomas et al. (2024). Figure S1 provides a schematic of each new convolutional operator in the architecture.
Self-attention layers use rotary positional embeddings (Su et al., 2024).

Model size information and hyperparameters used for Evo 2 models are shown in Table 2. Each Evo 2
model uses a pattern of Hyena-SE, Hyena-MR and Hyena-LI, and attention, with the number of repetitions
scaling with model size. Hyena-SE uses inner filters of length 7, Hyena-MR length 128. GELU activations are
only used for the first layer, followed by no activations.
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‘ Evo240B Evo2 7B Evo 2 1B base

Parameters 40.3B 6.5B 1.1B
Total Layers 50 32 25
Hidden Size 8,192 4,096 1,920
FEN Size 22,528 11,264 5,120
Num Heads 64 32 15
Total Tokens |~ 9.3T 2.4T 1T

Table 2 | Model architecture configurations for Evo 2 models

4.1.2. Loss function

Evo 2 is trained with a reweighted cross entropy loss, which weighs the loss contribution of repetitive portions
of DNA by 0.1. This affects the genomic window and whole genome portions of the data which contain these
annotations. This loss has been found in other DNA models to improve performance on downstream tasks and
better calibrate likelihoods between repetitive and nonrepetitive DNA (Benegas et al., 2025), which we found
to be true for downstream tasks in a controlled comparison (Appendix B.1). The loss is

1
Cuce = 7z Z welee(t)

with weighting
0.1 if position t is in repetitive region
We = .
1.0 otherwise
Z= 01 Nrepeat + Nnon_repeat

where w;, is the weight applied to each position, Nyepeats represents the number of positions in repetitive regions
within a batch and Nyon repeat is the number of non repetitive regions, and Z is the normalization factor that
ensures consistent loss scaling regardless of the proportion of repetitive regions.

For any base pair, the model is always tasked with predicting the uppercase character. For the first 3T
tokens of pretraining, lowercase tokens are input to the model to add information on which portions of DNA
are repetitive. This was done to further help learn different representations for interspersed repeats, which
are very common in many eukaryotic genomes. For additional pretraining and for all midtraining, all inputs
to the model are uppercase. Loss is masked on special tokens used to condition the model that we do not want
to generate, including the stitch tokens ‘@’ and ‘#’, as well as the multi-token phylogenetic tags used during
midtraining.

4.1.3. Pretraining infrastructure

Evo 2 was trained on Savanna (see Section 6), custom training infrastructure built with components from
DeepSpeed, GPT-NeoX (Andonian et al., 2023), and Transformer Engine. Our stack supports efficient pre-
training of multi-hybrid models and new context parallel algorithms. We train our largest models with mixed
precision, using a 3D mesh of data, tensor, and context parallelism, combined with ZeRO-3 (Rajbhandari et al.,
2020). During training, we use Transformer Engine’s FP8 implementation for linear layers and RMSNorm:s.

4.1.4. Pretraining phase

Table 3 provides information on our pretraining configuration. We refer to the models after pretraining but
before context extension as Evo 2 40B and 7B base.
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‘ Evo 2 40B base Evo 2 7B base Evo 2 1B base
Learning Rate 2.0e-4 3.0e-4 3.0e-4
Training Batch 16.8M 4.2M 2.1M
Total Iterations 516K 500K 490K
Pretraining Tokens 8.7T 21T 1T
Sequence length 1024 (6.6T), 8192 (1.1T) 8192 8192

Table 3 | Pretraining hyperparameters for Evo 2 models. Each model uses the AdamW optimizer with 81 = 0.9,
B2 = 0.95, and cosine learning rate decay.

4.1.5. Midtraining phase: Context extension

We follow a multi-stage midtraining procedure, gradually extending the context length while keeping the
same batch size as pretraining, adjusting model parallelism accordingly. Midtraining was performed on an
adjusted data composition, including more whole genomes and with longer average sequence length (Figure
1, Appendix S5).

We explore two different rotary embedding-based methods to adapt to longer sequences: positional inter-
polation by down scaling the positional index of tokens (Chen et al., 2023) and increasing the base frequency
of the RoPE embedding (Xiong et al., 2023). We decide on a combined approach using both together, with a
10x increase to the base frequency for every doubling of the context length. Table 4 provides information on
our midtraining protocol.

After extension stages, model performance was evaluated using loss, performance on short sequence DMS
tasks, and performance on our long context needle-in-a-haystack evaluation to evaluate effectiveness of the
extension. We did not find significant differences between different extension protocols. Based on the success-
ful context extension results for the 7B, we reduced the number of stages and increase the number of tokens
for the 40B, seeing 600B tokens during midtraining.

Context Length  Base Frequency Scale Factor | Evo 2 7B Evo 2 40B
Training Tokens
32.8K 1.0x10° 4 50B -
65.5K 1.0x107 8 50B -
131.1K 1.0x108 16 50B 200B
262.1K 1.0x10° 32 50B 200B
524.3K 1.0x10%° 64 50B -
1048.6K 1.0x10'! 128 50B 200B
| 300B 600B

Table 4 | Context extension protocol and number of tokens for Evo 2 7B and 40B

4.1.6. Midtraining phase: Needle-in-a-haystack evaluation

We developed a novel synthetic evaluation to assess the ability of DNA language models to identify and utilize a
specific sequence pattern in its context to make predictions on a repeated sequence with the same pattern. This
“needle-in-haystack” evaluation quantifies a model’s capacity to retrieve sequence patterns within different
context lengths. For each evaluation, we generated a random DNA sequence of 100 base pairs (bp) to serve
as the “needle” sequence. A background sequence (“haystack”) was constructed by sampling DNA base pairs
uniformly at random at varying lengths following powers of two, ranging from 512 bp to 1,048,576 bp. The
needle sequence was systematically inserted at different relative positions within each haystack, specifically
at depths corresponding to 10% through 90%, at intervals of 10%, of the total haystack length. A “query”
sequence, which is an exact duplicate of the needle sequence, was then placed at the suffix of the haystack
sequence.

The evaluation methodology employs a modification of the “categorical Jacobian” analysis, as originally
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proposed by Zhang et al. (2024), to measure the model’s use of the needle sequence to predict the query
sequence. At a high-level, we mutate the needle and measure the effects on model predictions for the query as
a way to assess retrieval. More formally, let C denote the categorical Jacobian matrix using the notation from
Nguyen et al. (2024a), where the entry C[i, j] indicates the Euclidean magnitude of the difference in logits at
position j when mutating position i to all tokens in the vocabulary. We compute a retrieval score

1
Nneedie

r= Claneedie + 1, Aquery + i]

i€ [O,Nneedle - 1]

where Npeedie = 100 is the length of the needle (and of the query) sequence, apeeqie is the starting position of
the needle and aquery is the starting position of the query. High values of r indicate greater retrieval strength.
We use a threshold of r > 0.8 to determine successful retrieval, which was obtained by manually inspecting
categorical Jacobian matrices of synthetic sequences containing repeated motifs. We computed the retrieval
score for various haystack lengths and when inserting the needle at various depths into the haystack.

4.1.7. Inference infrastructure

Evo 2 inference runs on Vortex (see Section 6). Vortex contains infrastructure and efficient implementation
for autoregressive generation with StripedHyena 2. For the new convolution operators with finite inner filters,
we adopt a caching strategy similar to KV caching in self-attention. For long filters, we switch to a recurrent
form. All convolution operators in the architecture can generate autoregressively with a constant memory
footprint.

4.2. OpenGenome2 training data

We significantly expanded upon the OpenGenome pretraining dataset, used to train Evo 1, to create OpenGenome2,
increasing the total number of nucleotides from 300 billion to 8.84 trillion. This included a 33% expansion

of representative prokaryotic genomes from 85,205 to 113,379 (357 billion nucleotides), a total of 6.98 tril-
lion nucleotides from eukaryotic genomes, 854 billion nucleotides of non-redundant metagenomic sequencing
data, 2.82 billion nucleotides of organelle genomes, and 602 billion nucleotides of subsets of eukaryotic se-
quence data to focus on likely functional regions of the genomes by focusing on different windows around
coding genes. We introduced these data augmentations to prioritize genes and regions around genes to im-
prove performance on downstream tasks (Appendix B.2).

4.2.1. Data curation

Reused datasets. Our previously published OpenGenome dataset was used in its entirety as part of the
training data for this study (Nguyen et al., 2024a). This included representative prokaryotic genomes available
through GTDB release v214.1, and curated phage and plasmid sequences retrieved through IMG/VR and
IMG/PR. As previously described, the OpenGenome dataset was curated to exclude genomic sequences of
viruses which infect eukaryotic hosts.

Updated prokaryotic genomes. New prokaryotic reference genomes made available through the GTDB re-
lease 220.0 (Parks et al., 2022) update were added to the training data for this study. New genomes were
identified by selecting all species’ reference genomes that had no previously published (release 214.1) genomes
within their species cluster, resulting in 28,174 additional prokaryotic genomes.

Eukaryotic reference genomes. All available eukaryotic reference genomes were downloaded from NCBI
on May 31, 2024, excluding atypical genomes, metagenome-assembled genomes, and genomes from large
multi-isolate projects. This resulted in 16,704 genomes including an estimated 10.7 trillion nucleotides. Only
contigs that were annotated as ‘Primary Assembly’, ‘non-nuclear’, or ‘aGasCar1.hap1’ (an aberrant annotation
that applied only to GCA 027917425.1) were retained. Mash sketch was run on each individual genome
with the flag “-s 10000” and the mash distance was calculated between all genomes as an estimate for their
pairwise 1-ANI (average nucleotide identity) (Ondov et al., 2016). All genomes with a mash distance < 0.01
were joined with edges in a graph (Csdardi et al., 2024), and clusters were identified by finding connected
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components. One representative genome per cluster was chosen, prioritizing genomes with a higher assembly
level and genomes with longer total sequence length. This clustering resulted in 15,148 candidate genomes.
Genomes were further filtered by removing ambiguous nucleotides at the termini of each contig, by removing
regions annotated as “centromere” in an available GFF file, and by removing contigs that were less than 10 kb
in total length. Finally, contigs that were composed of more than 5% ambiguous nucleotides were removed.
This final filtered set included 15,032 genomes and 6.98 trillion nucleotides.

Metagenomes. A previously described metagenomics dataset (Durrant et al., 2024) was further curated
as part of the training data. This included 41,253 metagenomes and metagenome-assembled genomes from
NCBIL, JGI IMG (Chen et al., 2021), MGnify (Mitchell et al., 2020), MG-RAST (Meyer et al., 2008), Tara Oceans
samples (Sunagawa et al., 2015), and Youngblut et al. animal gut metagenomes (Youngblut et al., 2020). All
contigs were split at consecutive stretches of ambiguous nucleotides of length 5 bp or longer, the split contigs
were filtered by a minimum sequence length of 1 kb, and only contigs with at least one open reading frame
as predicted by Prodigal (Hyatt et al., 2010) were kept. Contig-encoded proteins were previously clustered at
90% identity using MMseqs (Durrant et al., 2024; Steinegger and Soding, 2017). To further remove redundant
sequences, contigs were sorted by descending length, and each contig was only retained if at least 90% of its
respective protein clusters were not already in the sequence collection (determined using a bloom filter from
the pybloom package with a capacity of 1614960255 and an error rate of le-6).

Eukaryotic organelle genomes. 33,457 organelle genomes were identified and downloaded using the “NCBI
Organelle” web resource. Ambiguous nucleotides at the terminal ends of the organelle genome sequences were
removed. Sequences that had over 25 ambiguous nucleotides were removed. This resulted in 32,240 organelle
genomes that were used for training, including 17,613 mitochondria, 12,856 chloroplasts, 1,751 plastids, 18
apicoplasts, 1 cyanelle, and 1 kinetoplast.

mRNA and ncRNA transcripts. Transcripts were extracted using GTF files that were available through NCBI
for 4,390 reference genomes. All transcripts were extracted using these coordinates, and the longest repre-
sentative transcript per gene was selected to limit sequence redundancy. Transcripts from each representative
genome were then filtered to be at least 64 nucleotides in length and less than 100 kb in length, and transcripts
that had consecutive stretches of ambiguous nucleotides that were 5 bp or longer were removed. Transcripts
were clustered with mmseqs at 90% identity for each genome to reduce redundancy. Transcripts were then
split into “mRNA” and ncRNA (not-mRNA) by using the gbkey field of the GTF file. All mRNA and ncRNA
transcripts across all species were then grouped together, and separately clustered again using mmseqs at
90% identity.

Noncoding RNAs. ncRNA sequences were obtained from Ensembl (release 112), Rfam, and RNAcentral.
For Ensembl, we used sequences explicitly annotated as “ncrna” across 338 reference genomes. For Rfam
and RNAcentral, we downloaded all available sequences in each database. All ncRNA sequences were then
combined into a single FASTA file and then clustered with mmseqs easy-linclust with parameters -min-seq-id
0.9, -¢ 0.8, and —cov-mode 0 to produce the final set of sequences for training.

Eukaryotic promoters (EPDnew). Sequences from 15 organisms consisting of 600 bp representing positions
—499 to 100 relative to the transcription start sites, which correspond to experimentally validated promoter
sequences, were obtained from the EPDnew database. These sequences were then clustered with mmseqs
easy-linclust with parameters —min-seg-id 0.9, -c 0.8, and —cov-mode 0 to produce the final set of sequences
for training.

4.2.2. Data processing and tokenization

Datasets were preprocessed differently for pretraining and midtraining to reflect the different lengths of train-
ing. We augment the data in order to focus model pretraining on more conserved, information dense regions
around genes, inspired by previous approaches (Benegas et al., 2023). To enable data augmentations and
stitching of multiple contigs together, we introduce two special tokens. The ‘#’ token is used to join sequences
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from the same species with uncertain distance to each other, while the ‘@’ token is used for sequences that
are from the same contig/strand and are near each other. We perform a data ablation to test the effectiveness
of our data composition compared to one with fewer augmentations (Appendix B.2).

For pretraining, we perform the following additional filtering, processing, and augmentation strategies. We
use both ncRNA and mRNA transcript annotations to generate the augmented transcripts and gene windows
data portions.

GTDB and IMG/PR. We reverse complement 50% of the sequences. A random set of 100 sequences was
used for validation.

Transcripts. Sequences with 3 continuous ‘N’ nucleotides were removed, and all uracil is replaced with
thymine. We reverse complement 50% of the sequences. A random set of 1000 sequences is held out for
validation.

Augmented transcripts: Eukaryote promoter, exon, and splice overhangs As a separate data aug-
mentation, the same set of clustered mRNA and ncRNA transcripts (see Section 4.2.1) were modified
to include an additional 1,024 bp of starting sequence and an additional 32 bp around each exon for
additional splice site information. These “stitched” transcript sequences were then combined together
for each transcript using a special “@” token.

Eukaryotic genic regions. We use windows around annotated genes to enrich functional coding and
cis regulatory elements in the training data. Using the same GTF gene coordinates previously retrieved
from NCBI (see Section 4.2.1), we created an augmented collection of eukaryotic sequences that were
enriched around coding and noncoding exons. All transcripts that were retained after all filtering steps of
the mRNA and ncRNA transcript curation process (see Section 4.2.1) were identified, with 5000 bp from
both sides of each exon coordinate. These coordinates were then merged using bedtools (Quinlan and
Hall, 2010) in a strand-agnostic manner, and contiguous stretches of sequence were then extracted from
each respective genome sequence file. All extracted sequences were then split at consecutive stretches
of ambiguous nucleotides of length 5 bp or longer, and the remaining sequences were filtered to be at
least 1,000 nucleotides in length. The ‘@’ token is used to join sequences from the same contig. 50% of
entire joined sequences are reverse complemented.

For midtraining, we increased the effective length of sequences to take advantage of the model’s extended
context window. We achieved this by stitching together sequences from the same accession with different
strategies for each dataset, leading to effective sequence lengths of millions of base pairs for prokaryotic and
eukaryotic genomes so that the model sees relevant sequence in its entire window during training.

GTDB Sequences from the same organism are joined together with a special ‘#’ token at the gaps. This
increases the median sequence length from 12 kb to 2 million base pairs. Phylogenetic tags are added
every 131 kb to help condition the model.

IMG/VR Phylogenetic tags are added at the beginning of every IMG/VR sequence

Eukaryotic genomes Sequences from the same organism are joined together. ‘@’ is used for sequences
from the same contig, while the ‘#’ is used to join sequences from different contigs. This increases the
median sequence length from 15 kb to millions.

Transcripts, augmented transcripts, genomic windows, and IMGPR remain the same as for the pretraining
phase.

Phylogenetic tags are included help condition the model during midtraining, and loss is ignored for these
tokens. Phylogenetic tags are formatted Greengenes-style lineage strings which concatenate all taxa starting
domain to species, with all uppercasing separated by semicolons. ’|’ tokens are added at the start and end,
similar to in Evo 1 (Nguyen et al., 2024a). For example, the tag for E. coli would be:

|D__BACTERIA;P__PSEUDOMONADOTA;C__GAMMAPROTEOBACTERIA;
0__ENTEROBACTERALES;F__ENTEROBACTERIACEAE;G__ESCHERICHIA;
S__ESCHERICHIA|
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4.2.3. UMAP visualization of whole genomes

We created a UMAP visualization of all prokaryotic and eukaryotic representative genomes used in the training
data as an illustrative representation of their abundance and diversity. K-mer frequencies were calculated for
all prokaryotic and eukaryotic genomes using jellyfish (Marcais and Kingsford, 2011) and k values 1 through 6.
These were combined into a single data frame, and scikit-learn (Pedregosa et al., 2011) was used to scale the
data. To better separate the domains, k-mer composition vectors were multiplied by 2 for archaeal species and
by 3 for eukaryotic species. The umap.UMAP function was used to then calculate the UMAP with parameters
n_neighbors=15, min_dist=0.5, and default parameters otherwise (McInnes et al., 2018).

4.3. Prediction evaluations
4.3.1. Effect of mutations on Evo 2 likelihoods around start codons

Reference genome sequences and their annotations for 20 prokaryotic and 16 eukaryotic species were obtained
from NCBI From the annotations of each species, 1,024 protein-coding genes were randomly sampled, with
the exception of N. equitans, for which all of its 536 protein-coding genes were selected. For each of these
sampled genes, we selected genomic coordinates ranging from -20nt to +20nt from the first base of the start
codon, and mutated the wildtype base of each position to each of the three alternative bases to introduce SNVs.
Then, using the Evo 2 7B model, we calculated the difference in the likelihoods of the SNVs to their respective
wildtype sequences, both of which included the genomic context of a 8,192nt window that is centered around
the mutated nucleotide. In calculating the log likelihoods of both wildtype sequences and their SNVs, we used
the average likelihoods of the original sequence and its reverse complement. These delta likelihoods were
averaged across the 1,024 sampled genes per each position for each species. The same process was used for
the variant effects around stop codons. The phylogenetic trees for both prokaryotic and eukaryotic species
were constructed using existing literature (Hug et al., 2016; Hartmann et al., 2006; Hedges, 2002).

4.3.2. Effect of prokaryotic mutations on Evo 2 likelihoods

We systematically introduced artificial mutations across different genomic regions in prokaryotic genomes.
Annotated reference genomes of 20 prokarytoic species shown below were obtained through NCBI.

* Escherichia coli (GCF_000005845.2)

* Bacillus subtilis (GCF_000009045.1)

*» Synechocystis sp. PCC (GCF_000019485.1)

* Mycobacterium tuberculosis (GCF_002357975.1)
* Bacteroides thetaiotaomicron (GCF_001314975.1)
* Methanococcus maripaludis (GCF_002945325.1)
* Nitrosopumilus maritimus (GCF_000018465.1)

* Acinetobacter baumannii (GCF_001628795.1)

* Enterococcus faecium (GCF_009734005.1)

* Klebsiella pneumoniae (GCF_000968155.1)

* Neisseria gonorrhoeae (GCF_023822665.1)

* Neisseria meningitidis (GCF_015679665.1)

* Pseudomonas aeruginosa (GCF_000626655.2)

* Staphylococcus aureus (GCF_003609855.1)

* Methanocaldococcus jannaschii (GCF_000091665.1)
* Sulfolobus solfataricus (GCF_000968435.2)

* Haloferax volcanii (GCF_010692905.1)

* Thermococcus kodakarensis (GCF_028471865.1)
* Nanoarchaeum equitans (GCF_000008085.1)

* Streptomyces coelicolor (GCF_008931305.1)

For each species, 5,000 positions were randomly sampled from bases annotated as coding regions, and
2,000 positions each were sampled from bases within loci annotated as rRNAs, tRNAs, and ncRNAs, respec-
tively. Positions not annotated as CDS, rRNA, tRNA, or ncRNA were considered to be intergenic regions, from
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which 2,000 positions were sampled for each species. Centered around each sampled position, a 8,192 bp
window was used as the genomic context for the calculation of likelihoods with Evo 7B. For each sampled po-
sition in the CDS, the wildtype base was mutated to each of the three alternative bases to introduce SNVs, and
deleted for the 1 bp deletion mutant. For each sampled position in rRNA, tRNA, ncRNA, or intergenic regions,
the 10 bp window surrounding the position was deleted for the 10 bp deletion variant. For the deletion vari-
ants, the 8,192 bp window was extended into the neighboring sequences to match the length of the wildtype
sequence (8,192 bp) to avoid any biases in the likelihoods that arise from differences in sequence lengths.
Whether an SNV in the coding region was synonymous, missense, or a nonsense mutation was determined
using the standard codon table for all species.

4.3.3. Effect of eukaryotic mutations on Evo 2 likelihoods

We systematically introduced artificial mutations across different genomic regions in eukaryotic genomes.
Gene annotations were extracted from GFF3 and GTF files obtained through Ensembl (Harrison et al., 2024)
or NCBI. Reference genome sequences for 16 eukaryotic species were used:

* Arabidopsis thaliana (GCF_000001735.4)

* Caenorhabditis elegans (GCA_000002985.3)

* Callithrix jacchus (GCA_011100555.1)

* Chlamydomonas reinhardtii (GCA_000002595.3)
* Drosophila melanogaster (GCF_000001215.4)
* Danio rerio (GCA_000002035.4)

* Homo sapiens (GCF_000001405.40)

* Macaca mulatta (GCF_003339765.1)

* Mus musculus (GCF_000001635.27)

* Nicotiana attenuata (GCA_001879085.1)

* Oryza sativa (GCA_001433935.1)

* Paramecium tetraurelia (GCA_000165425.1)

* Saccharomyces cerevisiae (GCA_000146045.2)
* Thalassiosira pseudonana (GCA_000149405.2)
» Tetrahymena thermophila (GCA_000189635.1)
* Xenopus tropicalis (GCF_000004195.4)

Mutations were generated in coding sequences, including synonymous substitutions, nonsynonymous sub-
stitutions, premature stop codons, and single nucleotide deletions (frameshift). Noncoding regions include 5’
UTRs, 3’ UTRs, introns, intergenic sequences, and noncoding RNA exons annotated as IncRNA (IncRNA, lin-
cRNA, or Inc_ RNA), snoRNA, miRNA (miRNA, pre_miRNA), snRNA, tRNA (tRNA or source=trnascan), rRNA,
or ncRNA (ncRNA or ncRNA_gene). Noncoding regions were mutated with 10 bp deletions. 8,192 bp of se-
quence context around each mutation position were used, and additional flanking sequence was appended to
the ends of the sequence in the case of deletions to keep the length of the sequences consistent. Species-specific
codon tables were used to identify appropriate premature stop codons and substitutions. Up to 200,000 se-
quences were sampled across sequence types to maintain balanced representation. For each unique region
coordinate (i.e. a specific exon or intron) up to 20 distinct mutations were retained. For each region and
mutation type, the median change in likelihood was calculated as the representative change in likelihood.

4.3.4. Stop codon analysis across genetic codes

To test the ability of the Evo 2 model to understand variations in the genetic code usage across different
species, we introduced premature stop codons into coding sequences across 5 species: Arabidopsis thaliana
(GCF_000001735.4, standard code), Homo sapiens (GCF_000001405.40, standard code), Mycoplasma pneu-
moniae (GCF_900660465.1, mycoplasma code), Thalassiosira pseudonana (GCA_000149405.2, ciliate code),
and Tetrahymena thermophila (GCA_000189635.1, ciliate code). GFF3 and GTF annotation files were used
to identify coding sequences. Coding sequences and mutation positions were randomly selected, filtering
out pseudogenes and sequences shorter than a minimum length threshold of 10. For each selected coding
sequence, randomly selected codons were replaced with seven different stop codons (TAA, TAG, TGA, AGG,
TCA, AGA, TTA). Sequences were randomly subsampled to at most 200,000 per genome. The likelihood of
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the reference sequence and mutated sequences was calculated with the Evo2 7B model with sequence context
windows ranging from 100 to 8,192 base pairs centered on the mutation site. The change in likelihood was
calculated for each mutation, and the median of these values for each codon was calculated for each species.
These median values were z-score standardized across all 7 tested codons.

4.3.5. Noncoding regulatory sequence evaluations (DART-Eval)

For zero-shot evaluations in DART-Eval (Patel et al., 2024), we assessed model performance on Task 1 (CCRE),
Task 2 (TF Motif), and Task 5 (Variant Effect Prediction). Tasks 1 and 2 focused on likelihood-based eval-
uations: Task 1 involved distinguishing candidate cis-regulatory elements (cCREs) from shuffled control se-
quences, using a dataset of over 2.3 million sequences derived from experimentally validated regulatory re-
gions, while Task 2 aimed to identify transcription factor (TF) motifs by differentiating true TF binding sites
from control sequences, utilizing a dataset of approximately 577,000 sequences from TF footprinting experi-
ments.

Task 5 evaluated variant effects through both likelihood-based and embedding-based analyses. This task
included two datasets: one examining chromatin accessibility QTLs (CaQTLs) across African populations,
with over 219,000 variant sites, and another focusing on Yoruba dynamic sequence QTLs (dsQTLs), with
approximately 28,000 sites. For the embedding-based analysis, Evo 2 embeddings were first extracted from
Block 13, which was randomly selected for both the 7B and 40B models. Additionally, Block 27 was then
chosen for the Evo 2 7B model while Block 20 was selected for the Evo 2 40B model due to their superior
performance on the BRCA1 variant supervised classification task (see Section 4.3.16). We selected these
tasks to emphasize Evo 2’s zero-shot capabilities for regulatory sequence prediction across various data types.
Results across all three tasks were compared to pre-computed results from testing various models in the DART-
Eval paper, including GENA-LM (bert-large-t2t), HyenaDNA (large-1m), DNABERT-2 (117M), and NT 500M
(v2-500m-multi-species).

4.3.6. Zero-shot protein fitness prediction

We conducted zero-shot fitness prediction for protein and ncRNA sequences as described in Nguyen et al.
(2024a). We previously compiled nine datasets of prokaryotic DMS datasets from ProteinGym in which the
original study authors had provided readily accessible nucleotide and protein sequences: a B-lactamase DMS
by Firnberg et al., a 8-lactamase DMS by Jacquier et al., a CcdB DMS, a multiprotein thermostability dataset,
an IF-1 DMS, an Rnc DMS, an Haelll DMS, a VIM-2 DMS, and an APH(3")II DMS. See ProteinGym (Notin et al.,
2023) for a list of references to these studies. We also compiled six datasets of human proteins from Livesey
and Marsh (2023) in which the original study authors had provided readily accessible nucleotide and protein
sequences: a CBS DMS, a GDI1 DMS, a PDE3A DMS, a P53 DMS by Kotler et al., a P53 DMS by Giacomelli et
al., and a BRCA1 DMS. See Livesey and Marsh (2023) for references to these studies.

For this study, we also compiled a set of 18 DMS datasets corresponding to proteins from viruses that
infect humans: an HCV polymerase DMS by Qi et al., an influenza hemagglutinin DMS by Wu et al., an
influenza nucleoprotein DMS and a PB1 DMS by Doud et al., an influenza PA DMS by Wu et al., an influenza
neuraminidase DMS by Jiang et al., an HIV-1 TAT DMS and an HIV-1 REV DMS by Fernandes et al., an HIV-1
envelope DMS by Haddox et al., an HIV-1 envelope DMS by Duenas-Decamp et al., an influenza hemagglutinin
DMS by Lee et al., an HIV-1 envelope DMS by Haddox et al., an influenza PB2 DMS by Soh et al., a Zika
envelope DMS by Sourisseau et al., a SARS-CoV-2 spike RBD DMS by Starr et al., a coxsackievirus capsid DMS
by Mattenberger et al., an AAV2 capsid DMS by Sinai et al., a SARS-CoV-2 Mpro DMS by Flynn et al., a dengue
virus NS5 DMS by Suphatrakul et al., and an influenza PB1 DMS by Li et al. See ProteinGym (Notin et al.,
2023) for a list of references to these studies.

For comparing nucleotide and protein language models on bacterial and human DMS datasets, we utilized
the complete set of unique nucleotide sequences and their corresponding fitness values exactly as reported
in the original studies. When discrepancies arose between fitness values reported for nucleotide sequences
versus their protein counterparts, we used the fitness values for the nucleotide sequences; in these cases, we
evaluated the protein language models using the translated sequence. For mutations involving stop codons,
which were reported in some studies, we included these sequences when evaluating the nucleotide language
models but excluded them from the protein language model benchmark. For human viral proteins, we used the
wildtype protein sequence and substitutions as reported by ProteinGym to evaluate protein language models.
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To evaluate the nucleotide language models on human viral proteins, we manually retrieved the nucleotide
sequence of each protein from the GenBank entry associated with each protein’s UniProt entry. For each amino
acid substitution in ProteinGym, we used the most frequently used nucleotide codon in the human codon table
corresponding to the mutant amino acid value.

To assess model performance, we calculated the Spearman correlation between the experimental fitness
values and the model-derived sequence scores. For autoregressive language models, we used sequence like-
lihood as the score, while for masked language models, we used sequence pseudolikelihood. We compared
the Evo 2 40B, Evo 2 7B, Evo 1, GenSLM (Zvyagin et al., 2023), Nucleotide Transformer (Dalla-Torre et al.,
2024), and RNA-FM (Chen et al., 2022) nucleotide language models and the CARP-640M (Yang et al., 2024),
ESM-1v (Meier et al., 2021), ESM-2 650M, ESM-2 3B (Lin et al., 2023), ProGen2-large, and ProGen2-xlarge
(Nijkamp et al., 2023) protein language models.

4.3.7. Zero-shot ncRNA fitness prediction

We previously compiled nine datasets of DMS datasets on ncRNA (Nguyen et al., 2024a): a ribozyme DMS by
Kobori et al., a ribozyme DMS by Andreasson et al., a tRNA DMS by Domingo et al., a tRNA DMS by Guy et al.,
aribozyme DMS by Hayden et al., a ribozyme DMS by Pitt et al., and a rRNA mutagenesis study by Zhang et al.
See Nguyen et al. (2024a) for a list of references to these studies. To assess model performance, we calculated
the Spearman correlation between the experimental fitness values and the model-derived sequence scores. For
autoregressive language models, we used sequence likelihood as the score, while for masked language models,
we used sequence pseudolikelihood. We compared the Evo 2 40B, Evo 2 7B, Evo 1, GenSLM, Nucleotide
Transformer, RNA-FM, RNAErnie (Wang et al., 2024), and RiNALMo (Peni¢ et al., 2024) nucleotide language
models.

4.3.8. Zero-shot mRNA decay evaluation

For this evaluation, we used a human cell line dataset that leverages metabolic RNA labeling to estimate mRNA
decay rates across the transcriptome. We used the average values across the reported lines as a measure of
overall mRNA decay rates. We then used the Evo 2 40B and 7B models, along with Nucleotide Transformer,
RNA-FM, and RiNALMo to compare sequence scores to mRNA decay rates. For inputs to each model, we either
used the full-length mRNA or the longest context allowed by the model from the end of the transcript. Since
model scores may be confounded by sequence length, we first applied loess regression to correct for variations
in transcript length.

4.3.9. Exon/intron classification

To evaluate model embeddings’ ability to classify genomic positions as exonic or intronic across diverse eu-
karyotes, we selected 94 available eukaryotic species from PANTHER19.0 (Mi et al., 2013). We partitioned
organisms into training (80%), hyperparameter optimization (10%), and test (10%) sets, with Homo sapi-
ens, Mus musculus, and Danio rerio manually assigned to the test set after random partitioning. Trichomonas
vaginalis and Leishmania major, originally in the test set, were excluded from evaluation due to insufficient
intronic annotations. All computations were performed on a single NVIDIA H100 Tensor Core GPU. Model
versions used were evo2_7b _gen for Evo 2, evo-1-8k-base for Evo 1 (Nguyen et al., 2024a), and nucleotide-
transformer-2.5b-multi-species for Nucleotide Transformer (Dalla-Torre et al., 2024).

For each species, we randomly sampled positions from NCBI RefSeg-annotated (O’Leary et al., 2016) long
noncoding and protein-coding genes in an unbiased manner. The latest version of RefSeq FASTA and GTF
files were downloaded on November 18th, 2024. All exon annotations from RefSeq GTF files were included,
without distinguishing between constitutive and alternative exons. For each position, we extracted both for-
ward and reverse strand sequences from reference genomes up to each model’s maximum length (8192 bp
for Evo 2 and Evo 1; 5994 bp for Nucleotide Transformer), with the target position at the 3’ end of each.
We concatenated the forward and reverse strand embeddings as classifier input after keeping all embedding
dimensions and only the final sequence position.

We evaluated both linear classifiers and single-hidden layer perceptrons. For initial optimization, we sam-
pled 150 positions per species and extracted model embeddings from each model’s top level layers. Using
weighted binary cross-entropy loss, we trained classifiers for all layers and selected the best performing layer
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based on validation accuracy. We then optimized hyperparameters (number of hidden layers (O or 1), hid-
den layer dimension, learning rate, batch size, and weight decay) using Tree-structured Parzen Estimators
(TPE) on the selected layer, choosing the configuration that maximized validation accuracy. For Evo 2 - layer:
blocks.26, number of hidden layers: 1, hidden layer dimension: 1024, learning rate: 5 x 107>, batch size:
16, and weight decay: 2 x 10~*. For Nucleotide Transformer - layer: 24, number of hidden layers: 1, hidden
layer dimension: 1024, learning rate: 5 x 10~#, batch size: 64, and weight decay: 2 x 10~7. For Evo 1 - layer:
blocks.3, number of hidden layers: 0, learning rate: 5 x 10~>, batch size: 64, and weight decay: 1.5 x 107°.
Final classifiers were trained on 1500 positions per species using these optimal parameters.

4.3.10. Gene essentiality

We conducted zero-shot gene essentiality prediction as previously described (Nguyen et al., 2024a). We ob-
tained binary essentiality data (labeled as “essential” or “nonessential”) for 56 bacterial genomes from the
DEG database (Zhang, 2004). Additionally, we incorporated genome-wide essentiality data for two phage
genomes, lambda and P1, from Piya et al. (2023), using the binary labels that the study authors assigned
based on their CRISPRIi screen results.

To conduct our in silico gene essentiality screen, we accessed the complete bacterial genomes using DEG-
provided RefSeq IDs. For the phage genomes, we used RefSeq: NC 001416 (lambda phage) and RefSeq:
NC 005856 (P1 phage) as reference genomes. We provided the model with gene sequence plus symmetric
context totaling 8,192 bp (equal distribution on both sides). For genes exceeding 8,192 bp in length, we
utilized only the first 8,192 bp of the sequence.

We calculated scores by determining the difference in log-likelihoods between mutated and wildtype se-
quences. Our mutation strategy involved inserting multiple stop codons (“TAATAATAATAGTGA”) at a 12-
nucleotide offset into the coding sequence. We evaluated the Evo 2 40B, Evo 2 7B, and Evo 1 131k models
using this strategy. We also used the gene’s linear position in the reference genome as a predictive value for
essentiality to control for potential positional bias in the model’s predictions. We assessed gene conservation as
another control. We first extracted all protein sequences from the OpenGenomel dataset, performed an all-by-
all sequence search (using mmseqs easy-search with default parameters) between proteins and OpenGenome
proteins, counted the number of significant hits (E-value threshold of 1 X 1072), and used higher hit counts
as an approximation of greater conservation and potential essentiality. We evaluated the predictive power of
the log-likelihood changes (and control experiments) for binary gene essentiality using the AUROC score.

4.3.11. IncRNA essentiality

Essential IncRNA genes were recently identified in a Cas13 knockdown experiment of IncRNA transcripts in
5 different cell lines (HAP1, HEK293FT, K562, MDA-MB-231, and THP1) (Liang et al., 2024). This included
a total of 778 genes that were essential in one or more cell lines, and 46 that were essential in all 5 cell
lines. Human IncRNA gene annotations were collected from a previous publication (Sarropoulos et al., 2019).
Cas13 guide sequence binding sites were used as mutation positions, with 100 bp of sequence being scrambled
around the genomic Cas13 mutation position, and up to 6,000 bp (Nucleotide Transformer) or 8,192 bp (Evo
2 models) of surrounding flanking sequence were extracted. 97.7% (48,310 out of 49,441) of Cas13 guide
sequences were mapped to their corresponding IncRNA gene genomic position. The IncRNA transcripts were
also scrambled at guide positions and analyzed separately. The difference in log-likelihoods for reference and
mutated sequences were then calculated using Evo 2 7B, Evo 2 40B, and nucleotide transformer 2.5B multi-
species. The average difference in log-likelihood for each gene was used as the final change in log-likelihood
value for each gene. These values were then used as a predictive variable in a logistic regression model of gene
essentiality, and directly compared to simple genetic metrics such as GC content and transcript length. Gene
age values from the original IncRNA essentiality study (Sarropoulos et al., 2019) were used where available
as an additional control.

4.3.12. Zero-shot variant scoring

We compare different models’ ability to score mutations, zero-shot, by taking the delta between the predicted
mutant and reference log likelihoods. DNA models use the DNA sequence around the variant while protein
models are scored using the amino acid sequence of the gene. For indels, we also normalized to the reference
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sequence, and for DNA models to keep the change in likelihood invariant to length we maintain the total
length of sequence scored to be the same regardless of the length of the indel by centering on the indel
and adding or removing context nucleotides on the edges of the window. Variants assigned a more negative
log-likelihood change from reference are considered to be more deleterious. Across the various evaluations,
we used the following models for comparisons: CADD (Schubach et al., 2024), GPN-MSA (Benegas et al.,
2023), PhyloP (Pollard et al., 2010), Nucleotide Transformer 2.5B multi-species (Dalla-Torre et al., 2024),
Evo 1 (Nguyen et al., 2024a), RNA-FM (Shen et al., 2024), EnCodon/DeCodon (Naghipourfar et al., 2024),
CodonBERT (Li et al., 2023), ESM-1b (Rives et al., 2021), ESM-2 (Lin et al., 2023), and AlphaMissense (Cheng
et al., 2023).

To score a variant with Evo 2, we take a genomic window of length 8,192 around the variant and calcu-
late the likelihood of the variant sequence divided by the likelihood of the reference sequence at the same
position. For encoder models, we applied a position-wise masking to calculate the pseudolikelihood of the
reference sequence normalized to pseudolikelihood of the reference alleles. We use the change in pseudolike-
lihood (Brandes et al., 2023) to score non-SNVs using encoder models such as ESM-1b, ESM-2, and Encodon,
but cannot include indels for models with fixed coordinates like GPN-MSA or AlphaMissense. For PhyloP, we
use PhyloP100 which is built on alignments from 100 vertebrate species. To score non-SNV variants, we take
the total of the PhyloP scores at each affected position in the reference. For each benchmark we score the
same variants with all models.

4.3.13. ClinVar variant effect prediction

We use ClinVar release 2024.02.28, a database of expert annotated human disease variants (Landrum et al.,
2013). We remove variants which affect more than 64 base pairs of reference or alternate allele sequence
and remove variants of unknown significance from the evaluation. We include only variants on the nuclear
genome, with a review status of at least two stars (i.e., at least multiple submitters provided evidence or an
expert panel reviewed the variant), and subset to loci with matched transcript_ids in GRCh38.p14 GTF
file.

Using model scores, we classify Pathogenic/Likely Pathogenic variants from Benign/Likely Benign variants,
evaluating using AUROC and AUPRC. We calculate statistics for coding, noncoding, both for SNV and non-
SNV, to enable comparison with specialized models that only support coding variants or only support scoring
SNV.

4.3.14. SpliceVarDB variant effect prediction

We used SpliceVarDB, a database of experimentally validated splice variants in humans (Sullivan et al., 2024),
to classify mutations that cause aberrant splicing based on zero-shot prediction of various models. We excluded
variants labeled as ‘low-frequency’ in SpliceVarDB.

4.3.15. BRCA1/2 zero-shot classification

For all BRCA1 and BRCA2 SNVs with reported functional scores and classifications, we parsed sequences of a
8,192bp window around the variant site from the human reference genome used by the respective original
studies (Findlay et al., 2018; Huang et al., 2025). For both genes, we used the classification of SNVs made
in the original studies to label the SNVs: for BRCA1, SNVs labeled as “LOF” were classified as loss of function
variants (N = 823), while SNVs labeled as “FUNC” or “INT” were labeled as functional/intermediate variants
(N = 3,070); for BRCA2, SNVs labeled as “P strong”, “P moderate”, and “P supporting” were classified as
loss of function variants (N = 1,156), while SNVs labeled as “B strong”, “B moderate”, “B supporting” were
classified as functional/intermediate variants (N = 5,681).

4.3.16. BRCA1 supervised classification

For all BRCAI SNVs, we again parsed sequences of a 8,192 bp window around the mutation site using the
human reference genome. To identify the best block of Evo 2 40B to extract embeddings from for this task,
we took embeddings from the pre-normalization layer of each block of the Evo 2 40B model for the reference
sequence and the SNV. These embeddings were averaged across tokens to yield vectors of length 8,192 for
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the reference and the variant sequences. These two vectors were concatenated to yield vectors of length
16,384, which were used as inputs to train a classification model that consists of a feed-forward neural network
with three hidden layers. The neural network takes an input of dimension D and processes it through fully
connected layers of sizes 512, 128, and 32 neurons, respectively, before outputting a probability that the
given SNV is pathogenic. Each hidden layer is followed by ReLU activation, batch normalization, and dropout
(p = 0.3). The final layer uses sigmoid activation to produce binary classification probabilities. The complete
architecture is:
Input(D) — Linear(512) — RelLU — BatchNorm — Dropout(0.3)
— Linear(128) — ReLU — BatchNorm — Dropout(0.3)
— Linear(32) — ReLU — BatchNorm

— Linear(1) — Sigmoid

20% of all BRCA1 SNVs were withheld from training as the test set. 20% of the remaining SNVs were
further sequestered as the validation set. The model was trained on the training set using Adam optimization
(learning rate: 3 x 104, batch size: 128). Training employed early stopping (patience: 100), learning rate
reduction on plateau (factor: 0.5, patience: 20, min_Ir: 1x107°), and gradient clipping (max norm: 1.0). The
model was trained for up to 500 epochs using binary cross-entropy loss, with the best-performing model on
validation data selected for final evaluation. The model trained with the embeddings from block 20 performed
the best on the test set (AUROC = 0.92), which led us to choose this layer for the next step.

In the next step, for each SNV, we created a feature vector by extracting embeddings from four sequences:
the reference sequence, its reverse complement, the variant sequence, and its reverse complement. For each
of these four sequences, we focused on the narrower loci surrounding the variant site and calculated average
embeddings across different window sizes (ranging from 16 to 8,192 nucleotides in powers of 2). We then
concatenated the vectors from all four sequences into a single 32,768-dimensional feature vector for each SNV.
These feature vectors were used to train a classification model using the same architecture and parameters as
the model described previously. Among the different window sizes for averaging, we found that using a 128nt
window produced the best results, achieving an AUROC of 0.95 on the test set. This is the model we use for
comparison with zero-shot methods throughout our figures.

4.4. Mechanistic interpretability with sparse autoencoders
4.4.1. SAE training and dataset composition

We trained a BatchTopK sparse autoencoder (Bussmann et al., 2024), a variant of the TopK sparse autoencoder
(Makhzani and Frey, 2014; Gao et al., 2024a) on activations from the Evo 2 residual stream following layer
26 (a Hyena-MR block) for an intermediate checkpoint of the 7B model that was context-extended to 262,144
tokens. Sparse autoencoders take as input model activations x and autoencode them into a sparse feature
vector f, before predicting a reconstruction of the inputs x. The conventional SAE architecture (which we also
make use of here) is a very wide MLP with one hidden layer:

f=0(Wex +b)
X = Wdf +bg.

The nonlinearity o(-) that we use is the Batch-TopK activation function. The Batch-TopK activation function
is a version of the TopK activation function, which zeros out all but the k largest elements of a vector. The
BatchTopK activation function with an equivalent value of k and a batch of size B zeros out all but the kB
largest elements of the input batch. This allows the SAE to flexibly allocate capacity to higher-complexity
inputs. Evo 2 activations have dimensionality d,o4e1 = 4, 096 and our SAE has feature dimensionality dfeacure =
8 x 4,096 = 32, 768. We used k = 64 for our SAE training.

Batch-TopK SAEs are trained with a loss £ = Liecon + ®.Laux that combines a reconstruction loss Lyecon and
auxiliary loss Laux. The reconstruction loss is simply the mean squared reconstruction error:

an2
Liecon = I|x _x”zs

and the auxiliary loss Laux predicts the residual € = x — x using only “dead features” (see Gao et al. (2024a)
and Bussmann et al. (2024) for details). A dead feature is a feature f; which has not fired (i.e., f; = 0) for
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some large number of inputs during training. We call a feature dead if it has not fired for 10 million training
inputs.

Our main SAE (which we refer to as the mixed-data SAE) was trained on a dataset of prokaryotic and
eukaryotic genomes, representing a small subset of OpenGenome2. For prokaryotes, genomes were collected
from GTDB release 220.0, filtering for genomes annotated as GTDB and NCBI representative genomes, and
assembly level annotated as “complete”, totaling 2752 genomes and 10.97 billion base pairs. For eukaryotic
genomes, 16 representative species were selected (see Section 4.3.3), and only regions with high gene content
(genic regions, see Section 4.2.2) were used for SAE training, totaling 4.91 billion base pairs.

We subsampled this dataset to 1 billion activations from sequence chunks of length 16,384 to provide SAE
training data. These activations were then globally shuffled so that activations from the same input sequence
were unlikely to occur in the same SAEF training batch. We trained the SAE using the Adam optimizer with a
learning rate of 5 x 107>, default values of 81 and 85, and a batch size of 16,384 for a single epoch. We used
a trapezoidal learning rate schedule, ramping up from zero for the first 5% of training and ramping down to
zero for the last 5%. We also trained an SAE solely on eukaryotic data (which we refer to as the eukaryotic
data SAE). The eukaryotic data SAE was identically trained to the mixed-data SAE, except that instead of
subsampling 1B tokens from the combined eukaryotic and prokaryotic datasets, we subsampled only from the
eukaryotic dataset described above.

4.4.2. SAE metrics and feature embedding calculation

To compute some basic statistics for the trained mixed-data SAE, activations were computed for all features
across the E. coli K12 MG1655 genome (NCBI reference sequence NC_000913.3) and a length-matched seg-
ment of human chromosome 17 (NCBI reference sequence NC_000017.11, bases 40,019,967-44,661,618)
in 50 kb non-overlapping sequence chunks. Activation density for each feature was then computed as the
fraction of non-zero activations and the mean non-zero activation computed as expected across all sequence
chunks from the relevant genome for both prokaryotes and eukaryotes. To visualize the features in an embed-
ding, the (4096 x 32768) weights matrix was column-normalized and then embedded using UMAP (McInnes
et al., 2018) with 2 components and random seed 1 and visualized by coloring each point by the difference
in prokaryotic and eukaryotic activation density for each feature.

4.4.3. Prophage feature

To identify a prophage-associated feature, we used contrastive feature search on 100 kb sequences that are
centered on geNomad-annotated (Camargo et al., 2024) phage regions and include flanking bacterial regions.
These sequences were from 100 randomly selected genomes from GTDB. The feature with the highest mean
differential activation (f/19746) was selected. To evaluate the predictive value of this feature, we analyzed its
mean activation values in prophage regions. We then compared these values against length-matched bacterial
(non-phage) sequences from the same genome, sampled without replacement.

To analyze this feature at the genome scale, we computed feature activations on 50 kb non-overlapping
chunks of the E. coli K12 MG1655 genome, and compared them with RefSeq-annotated phage regions. In the
genome-scale plot in Figure 4B, we de-noise feature activations by setting a position’s activation to 0 if it does
not have a neighboring position with a nonzero activation. From the dataset of 100 randomly selected GTDB
genomes, we selected 3 loci with the highest f/19746 activation values outside of phage-annotated regions for
visualization in Figure S6D.

As feature f/19746 also activated on the region downstream of the last CRISPR direct repeat in E. coli,
we sought to determine whether Evo 2 is learning to associate sequences downstream of CRISPR direct re-
peats (like CRISPR spacers) with phage sequences or directly memorizing phage sequences. We investigated
this by performing ablations on the sequence. Using the same CRISPR locus displayed in Figure 4B, we first
computed feature activations on a synthetic sequence where all spacer sequences in the CRISPR array were
independently scrambled. Observing that this did not result in a change in the feature activation pattern,
we then computed feature activations on a synthetic sequence in which all the CRISPR direct repeats were
replaced with a constant scrambled sequence, while keeping the spacer sequences unchanged from the nat-
ural sequence. Lastly, we repeated the previous test but replaced CRISPR direct repeats with nonconstant,
scrambled sequences.
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4.4.4. E. coli genomic loci features

Features reflecting genome organization were identified using a combination of contrastive feature search and
manual examination of features with large total activations over sequence chunks of the E. coli K12 MG1655
genome (NCBI reference sequence NC_000913.3), as annotated by RefSeq. Feature activations for the 100 kb
segment displayed in the figures were computed over the full 100 kb segment as one batch.

To quantify mean activations over annotations, activations were computed over non-overlapping 50 kb
chunks of the E. coli K12 MG1655 genome. Each nucleotide in the genome was grouped into ORF, tRNA, rRNA,
or intergenic annotations based on existing RefSeq annotations, with the intergenic annotations including all
sequences that were not categorized as ORF, tRNA, or rRNA. ORF annotations were further categorized into
(+) ORF and (-) ORF depending on their directionality. For each annotation, mean activation for each feature
was computed by extracting and averaging the activations across all nucleotides within the annotation.

4.4.5. Protein secondary structure features

We identified a-helix and f-sheet associated features using contrastive feature search on all coding sequences
in the E. coli K12 MG1655 genome. Secondary structure annotations were obtained using the DSSP algo-
rithm (Kabsch and Sander, 1983; Kunzmann et al., 2023) on structures from the AlphaFold Protein Structure
Database (Tunyasuvunakool et al., 2021). For each feature, we computed the Pearson correlation between its
activation pattern on a coding sequence and the secondary structure annotations of the encoded protein, for
all coding sequences. The features with the highest mean Pearson correlation with a-helix regions (f/28741)
and pB-sheet regions (f/22326) were selected.

Structures of EF-Tu in complex with thrT tRNA, and of RpoB and RpoC in complex, were obtained using
AlphaFold 3 (Abramson et al., 2024) through the AlphaFold server. To project the features onto the structures,
we first preprocessed the feature activation values. Except for thrT tRNA, we first mean collapsed feature
activations per codon, as feature activations were computed at the genome level. Feature activations were
then smoothed using a Gaussian kernel with a window size of 10. We then overlaid the smoothed feature
activations on the structures, using linear interpolation coloring and clipping values at a maximum threshold
of 0.2, visualized using ChimeraX (Meng et al., 2023).

4.4.6. Frameshift and premature stop feature

Using the same set of artificially mutated coding sequences generated previously for the human genome,
contrastive feature search was used with the eukaryotic data SAE to identify features that seemed to specifically
correspond with frameshift and premature stop codon mutations, but not synonymous or nonsynonymous
substitutions. A subset of 100 loci was first used to calculate average feature activations across all mutation
types in 8192 bp windows. The difference in mean feature activations between the mutated and reference
sequence was used to prioritize features. Top 20 features for each mutation type were identified. Features that
were among the top 20 predictors for both frameshift and premature stop codon mutations were identified.
Features that were also in the top 20 for synonymous or nonsynonymous substitutions were then excluded
from this subset. This resulted in 3 remaining features: /24278, /29870, and f/18585. /24278 was then
selected for further analysis. A separate subset of 100 sequences, each of length 8192 bp, was used to analyze
24,278 feature activations on a per-nucleotide, and this subset was used to determine the average feature
activation pattern near the mutation site. A separate subset of 500 sequences was then used to estimate the
precision, recall, and the F1 score of the feature. For calculating these metrics, any non-zero activation of the
feature within 100 bp after the mutation position was considered a true positive.

4.4.7. Transcription factor motif features

From the GRCh38 human reference genome (Schneider et al., 2017), a random sample of 1,000 promoter
sequences, defined as 1 kb upstream of a transcription start site, was selected and passed through the model,
in batches of 100 sequences, to extract the SAE feature activations. All feature activations above the sparsity
threshold of 1 x 10~# were stored in sparse matrices from these activations. Following this selection, 31 bp
windows centered on each position with a feature activation greater than the sparsity threshold were extracted.

To ensure robust motif detection, a selection pipeline for good features was established. First, features

33


https://doi.org/10.1101/2025.02.18.638918
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.18.638918; this version posted February 21, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

were required to have activations across at least 50 promoter sequences to be considered for further analysis.
For each feature activation window, sequence complexity was assessed using Shannon entropy, calculated as
H = -3 mlog,(m) where & represents the frequency of each nucleotide in the sequence. To ensure high-
quality motif detection, sequences below the 25th percentile of complexity scores were filtered out. Position
Weight Matrices (PWMs) were constructed from the remaining sequences, and information content (IC) was
calculated for each position as 2 — H of the nucleotide frequencies in the PWM. The motif scoring system
incorporated multiple metrics: maximum IC, IC variance (to identify sharp conservation peaks), peak width
(number of positions with IC > 0.5), and peak spacing. Penalties were applied for deviating from expected
transcription factor binding site characteristics: a width penalty for diverging from the optimal 6-8 bp width,
and a peak penalty for having significantly more or fewer than 1-2 distinct peaks. The final motif score was
calculated as (maximum IC * 2 + IC variance) * (1 / (1 + width penalty + peak penalty)), with features
requiring a maximum IC > 0.3 to be considered valid motifs. After this filtering, motifs were scored based
on the maximum information content, number of high-information positions, information content variance,
and sequence complexity. For some motifs, an additional scoring metric, the number of zeros appearing in the
count matrices, was also incorporated into the scoring. Sequence logos were generated using the Logomaker
package (Tareen and Kinney, 2019) for visual inspection, and the JASPAR count matrices were passed through
the MEME suite TOMTOM Motif Comparison Tool (v5.5.7) (Gupta et al., 2007) with the “Human and Mouse
(HOCOMOCO V12 CORE)” dataset (Vorontsov et al., 2023) to match the motifs to known transcription factor
binding motifs.

4.4.8. Exon-intron features

SAE features associated with eukaryotic coding sequences, introns, and exon-intron boundaries were found
through contrastive feature search on the annotated sequence of chromosome 1 of the GRCh38 human ref-
erence genome (Schneider et al., 2017). 50 exon-rich segments of length 8,192 nt were sampled from this
reference sequence, and feature activations were collected from each segment. Then, we searched for features
with the top-20 highest values of the weighted sum

Zﬁ-(4mi -3),

where f; is the activation at base i, and m; is 1 if base i is annotated as the given genomic component (CDS,
intron, exon start, exon end), and 0 if not.

For features associated with exon starts and ends, the first 50 bases and the last 50 bases of each exon
were used as the loci where m; is 1, respectively. The features that are presented most frequently in these 50
segments were visually inspected to determine the features that activate the most consistently at the respective
loci, and a representative feature was chosen for CDS, introns, exon starts, and exon ends. To calculate the F1,
precision, and recall scores for each feature, we sampled 1,000 genes with 5 or more exons from the human
genome, and counted the bases where the features have a nonzero activation on or off the genomic regions
corresponding to each feature. The reference genome annotations for CDS and introns were considered to be
ground truth in calculating the numbers of true/false positives/negatives. For the exon start feature (f/1050),
we considered the first 25 bases of each exon following an intron to be the ground truth, in consideration
of the firing patterns of the feature. For the exon end feature (f/25666), we considered the last one base of
each exon followed by an intron to be the ground truth label. To calculate the mean activations of features
for each type of genomic loci, we used the same set of 1,000 genes and calculated the average activations of
each feature for each individual genomic locus identified by the ground truth labels — a single exon, a single
intron, first 25 bases of a single exon, and the last base of a single exon.

The activations for the same set of features were collected for the PDK3 gene loci of the woolly mammoth
genome (Sandoval-Velasco et al., 2024). The exon coordinates of the mammoth genome were derived from
homologs to the Loxodonta africana genome. Note that while the Loxodonta africana genomic sequence was
part of the training corpus for Evo 2, it was not part of the training data used to collect activations for the SAE.
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4.4.9. SAE feature visualization web viewer

We manually curated 104 prokaryotic genomes of microbiological, medical, or agricultural relevance from
NCBI. These genomes were annotated using the Bakta v1.10.3 pipeline (Schwengers et al., 2021), putative
prohage regions were annotated using geNomad (Camargo et al., 2024), and secondary structure annotations
were obtained using the DSSP algorithm (Kabsch and Sander, 1983; Kunzmann et al., 2023) on structures from
the AlphaFold Protein Structure Database (Tunyasuvunakool et al., 2021). Activations were computed for all
features without using the Batch-TopK activation function, and the top 50 largest activations per token were
retained. Building on igv.js (Robinson et al., 2022), features identified as mapping to prokaryotic concepts are
plotted and interactively displayed at https://arcinstitute.org/tools/evo/evo-mech-interp.

4.5. Unconstrained generation with Evo 2
4.5.1. Gene completion

DNA sequences were collected around genes from Haloferax volcanii, Escherichia coli, Saccharomyces cerevisiae,
Chlamydomonas reinhardtii, Arabidopsis thaliana, and Homo sapiens, covering archaeal, prokaryotic, and eu-
karyotic species. For each gene, a prompt of 1,000 base pairs upstream of the gene and the first 500 bp
(Haloferax volcanii, Escherichia coli, Saccharomyces cerevisiae) or 1000 bp (Chlamydomonas reinhardtii, Ara-
bidopsis thaliana, and Homo sapiens) of the gene sequence were input into the model. The language model
generated the remaining sequence using a temperature of 0.7 and top-k of 4. We performed 10 generations
for each prompt and evaluated results by converting to amino acids, aligning using BioPython, and calculating
the percent protein recovery. We compared Evo 1 and Evo 1 131k with the different Evo 2 models.

4.5.2. Mitochondrial genome generation

We prompted with 3,000 base pairs of the human mitochondrial genome and generated 250 unique mitochon-
drial sequences (16 kb each) using top-k of 4 and temperature of 1.0 or 0.7. Prompts were tested using posi-
tions 0-3,000 of the human mitochondrial genome and the reverse complement of positions 13,500-16,500.
Generated sequences were annotated using MitoZ (Meng et al., 2019) to assess TRNA, tRNA, and CDS counts.
Synteny analysis was performed using LoVis4u (Egorov and Atkinson, 2024). Sequence diversity was evalu-
ated through BLAST searches against the nt/nr database to quantify query coverage and sequence identity.
For structural analysis, we selected generated sequences containing the complete human complement of mito-
chondrial ND, CO, and ATP genes. Protein complexes were predicted using AlphaFold 3 through the AlphaFold
server, with identical analysis performed on human mitochondrial genes for comparison. Generated structures
were assessed through alignment against wild-type structures. Gene homology was analyzed using BLASTp
with default settings, with percent sequence identity calculated as the product of query coverage and percent
identity. Protein structures were visualized using ChimeraX (Meng et al., 2023).

4.5.3. Mycoplasma genitalium genome generation

Generation was initiated using the first 10.5 kb of the reference M. genitalium genome as prompt. Using Evo
2 40B, we generated 35 sequences of 580 kb each with temperature 1.0 and top-k of 4. We compared these
against previously generated M. genitalium sequences from Evo 1 131k and the reference natural M. genitalium
genome. Protein-coding regions were predicted using Prodigal (Hyatt et al., 2010) and analyzed for homology
using HHpred (Soding et al., 2005) against the Pfam database (Mistry et al., 2021). The density of significant
hits (E-value < 0.001) was calculated for generations from each model. Proteins with significant Pfam hits
were folded using ESMfold (Lin et al., 2023). Protein quality metrics evaluated included pLDDT scores, which
were derived from ESMfold, and secondary structure distributions, which were obtained using DSSP (Kabsch
and Sander, 1983). As a point of comparison, annotated proteins from the reference M. genitalium genome
were folded using ESMFold and compared to those from Evo 2 generated M. genitalium using the same metrics.
Protein structures were visualized using ChimeraX (Meng et al., 2023).

4.5.4. Yeast chromosome generation

Sequences were generated using the first 10.5 kb of S. cerevisiae chromosome III as prompt, with temperature
1.0 and top-k of 4 settings in Evo 2 40B. Twenty artificial chromosomes of 330 kb were generated. Gene

35


https://arcinstitute.org/tools/evo/evo-mech-interp
https://doi.org/10.1101/2025.02.18.638918
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.18.638918; this version posted February 21, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

prediction was performed using GeneMark-S with Prot-hint based on the Fungi proteins from OrthoDB v12.0.
As with the prokaryotic generations, predicted protein sequences were analyzed for homology against natural
proteins using HHpred (E-value < 0.001) against the Pfam database. Proteins containing significant Pfam hits
were subsequently folded using ESMFold and evaluated for pLDDT and secondary structure (DSSP). To predict
tRNAs and promoters, generated DNA sequences were annotated using the Yeast Genome Annotation Pipeline
(Proux-Wéra et al., 2012) and Promoter 2.0 (Knudsen, 1999) respectively (likelihood score > 0.8). Feature
density analysis included quantification of predicted tRNAs, promoters, and genes with intronic structure. As
a point of comparison, this process was repeated for the reference S. cerevisiae chromosome III genome.

4.6. Generative epigenomics via inference-time search
4.6.1. Beam search algorithm

We implemented a beam search algorithm for efficiently sampling a sequence autoregressively while guided
by a scoring function. At a high level, we sample autoregressively from a language model to obtain multiple
chunks of tokens that are all continuations of the same prompt. We then use a given scoring function to select
the best chunks, which are appended to the prompt for the next round of sampling.

More formally, let us denote a sequence as X = {x1,...,x.} € X' where L is the sequence length and X is
the vocabulary (e.g., DNA base pairs). Let

)A([a’ b] ~ p(xa,xa+1’ e ’Xb |)’Zl)i21 e )J’Za—l) = p(x[a’ b] |i[1’a - 1])

denote a sampled sequence from a distribution p, which we parameterize with an autoregressive language
model (e.g., Evo 2), and where a,b € [L] define the start and stop indices for a sampled sequence chunk such
that a < b. We define C = b — a + 1 as the length of a sampled sequence chunk. We can obtain samples from p
via standard autoregressive decoding. On each iteration ¢ of the beam search algorithm, we sample K chunks

10 [ce,c(t+1) - 1] ~ p(x[Ct,C(t +1) = 1] |X[1,Ct - 1]), k€ [K]

off the prompt X[1, Ct — 1].

Now, we are also given a scoring function f : X — R that takes in a sequence and outputs a nonnegative
score, where a lower value of the score is better. When we pick the prompt for iteration ¢ + 1, we can pick the
chunk with the lowest score to append to the prompt at iteration ¢, i.e.,

R[Ct,C(t+1) - 1] = arg min {f (f<<’<> [1,C(t+1) - 1])}

where
P11, ct+1) -1 =%[1,ct - 1] +xP[ce,c(t+1) - 1]

and + denotes a string concatenation operator.

Note that instead of taking only the best chunk, we can instead use the best K’ < K chunks as prompts for
sampling at the next iteration, i.e.,

%00 e, c(t+1) - 1] ~ p(x[Ct,C(t+1) = 1] |KPV[1,Cct - 1]), ke [K], je€ [K']

where ¥ [1, Ct - 1] includes one of the best-K’ chunks (i.e., with the lowest scores) according to f obtained
in the previous iteration. The algorithm iterates until all tokens L have been sampled. For the first chunk, we
sample off a sequence Xprompt- We assume that C is constant and that L is an integer multiple of C, i.e., all
chunks sampled throughout the procedure, including the final chunk, are of the same length.

4.6.2. Beam search for generative epigenomics

For the main design runs shown in Figure 6E, we used a chunk length C = 128, a total designed sequence
length of L = 19,968, sampled K = 42 chunks per prompt, and retained K’ = 2 prompts per iteration (i.e., we
sampled 2 x 42 = 84 chunks per iteration). We used Evo 2 7B to parameterize p, from which we sample using
standard autoregressive decoding with a temperature of 1.0 and top-k of 4. For Xprompt, We used a sequence of
length 40,960 upstream of the genomic region chrX: 52,051,929-52,123,468 in the mm39 reference genome.
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For our scoring function, we used an ensemble of Enformer (Avsec et al., 2021) and Borzoi (Linder et al.,
2025), where Borzoi itself contains an ensemble of four replicate models. We used the implementation of
Enformer athttps://github.com/lucidrains/enformer-pytorch and the Flashzoi reimplementation
of Borzoi (Hingerl et al., 2024).

We note that Enformer takes in a sequence x € X196608 and outputs scores Jpnormer € R, where each
dimension of ¥prmer COITesponds to 128 bp (representing output predictions for 896 x 128 = 114, 688 bp
centered in the input), thereby not making predictions for 40,960 bp of left and right flanking context. Our
scoring function requires a user-defined binary pattern yenformer € {0, 1}8°¢, which specifies, for example, a
Morse code peak pattern. To score with Enformer, we simply divide all entries in ¥g,¢mer PY the maximum
value in ¥, rormer (-€., so all values are in the interval [0, 1]), which we denote ¥ rmer, and report the score
as the ¢; norm

f Enformer (X) = HYEnformer - ﬁ'Enformer”l-

As input to Enformer, we concatenate: (i) 40,960 bp of sequence upstream of chrX: 52,051,929-52,123,468,
(ii) the designed sequence, and (iii) enough DNA sequence downstream of chrX: 52,051,929-52,123,468 to
achieve a total input sequence to Enformer of length 196,608. As beam search progresses, we mask the loss
such that it is defined only on the sequence designed by Evo 2.

Borzoi makes predictions similar to Enformer but with longer sequence lengths and higher output resolu-
tion, taking in a sequence x € X°24288 and outputting scores Sr](s’grzoi e R®1# where i € [4] refers to one Borzoi
model replicate in an ensemble of four and each dimension corresponds to 32 bp (representing output predic-
tions for 6,144 x 32 = 196, 608 bp centered in the input), thereby not making predictions for 163,840 bp of
left and right flanking context. We modify Ygnformer to have higher resolution by expanding its dimensionality
to 6,144 by repeating each entry 128/32 = 4 times to produce a vector ygor;o; € {0, 1}%144. We normalize the

Borzoi predictions 5’1(32rzoi by dividing by the maximum value across all dimensions and across all predictions in

the ensemble, to produce ffl(;;rzoi. We then combine scores across the Borzoi ensemble by computing a “lower
confidence bound”

()A’Borzoi)j =

4
1500 NG .
ZZ(ygo’mi)j] ~ [stdiera Gong)s| . T € [6144]
i=1

where (j} E(;o)rzoi

defined as

o (D)

Vporsoi @nd std(+) is the standard deviation. Our Borzoi loss is then

); indicates the jth entry in

fBorzoi (X) = [|¥Borzoi — ¥Borzoill1-

Analogous to the Enformer setting, our input sequence to Borzoi is a concatenation of: (i) 163,840 bp of se-
quence upstream of chrX: 52,051,929-52,123,468, (ii) the designed sequence, and (iii) enough DNA sequence
downstream of chrX: 52,051,929-52,123,468 to achieve a total input sequence to Borzoi of length 524,288.
As beam search progresses, we mask the loss such that it is defined only on the sequence designed by Evo 2.

Our final scoring function simply takes the average of the Enformer and Borzoi scoring functions

f(x) = % (fenformer (X) + fBorzoi (X)) -

We use this scoring function to guide the beam search algorithm as described above.

4.6.3. Design patterns and tasks
We designed six peak patterns:
* Long square wave: Alternating between 1664 bp of open chromatin and 1664 bp of closed chromatin.

* Medium square wave: Alternating between 768 bp of open chromatin and 768 of closed chromatin.
* Short rectangular wave: Alternating between 384 bp of open chromatin and 1152 bp of closed chro-

matin.

* “LO” morse code: Encoding LO (.-.. ---) in Morse code. One dot length corresponds to 768 bp.

* “ARC” morse code: Encoding ARC (.- .-. -.-.) in Morse code. One dot length corresponds to 384
bp.
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* “EVO2” morse code: Encoding EVO2 (. ...- --- ..---) in Morse code. One dot length corre-
sponds to 384 bp.

We follow the Morse code specification in which a dash is three times the width of a dot, dots and dashes
within a character are separated by a single dot length, and characters within a word are separated by three
dot lengths. Dots and dashes are encoded by open chromatin; spaces are encoded by closed chromatin.

4.6.4. Inference-time scaling experiments

We also conducted scaling analyses in which we vary the number of chunks sampled per beam-search iteration,
thereby increasing the amount of inference-time compute required to complete a single design run. For each
of the six patterns above, we ran beam search with the following configurations:

* K" =1,K =1 (1 tok/bp)
* K’ =1,K = 2 (2 tok/bp)
* K’ =1,K = 3 (3 tok/bp)
* K =1,K = 6 (6 tok/bp)
* K’ =1,K =9 (9 tok/bp)
* K'=1,K =12 (12 tok/bp)
* K’ =1,K =15 (15 tok/bp)
* K’ =2,K =15 (30 tok/bp)
* K’ =2,K = 30 (60 tok/bp)

where tok/bp indicates the number of tokens sampled per base pair designed. All other design parameters
were kept the same. We assessed the quality of a design with the AUROC metric, in which the “true” values
were the desired peak patterns Yenformer and Yporzoi, the “predicted” values were the outputs ¥ cormer and
VBorzoi» and the AUROC compares the true and predicted values separately for Enformer and Borzoi. The final
reported AUROC score for a design is the average of the Enformer and Borzoi AUROCs. We conducted these
scaling laws using either Evo 2 7B or a model that samples uniformly over the nucleotide vocabulary as the
proposal distribution p.
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5. Data availability

The OpenGenome2 dataset used to train Evo 2 is available at:
https://huggingface.co/datasets/arcinstitute/opengenome2

6. Code and model availability

We make code and tools for model exploration available at the following links:

* Top-level code repository: https://github.com/arcinstitute/evo2

* Pretraining, midtraining and finetuning code: https://github.com/zymrael/savanna

* Inference code: https://github.com/zymrael/vortex

* Evo Designer, an interactive user interface for generation and scoring with Evo 2:
https://arcinstitute.org/tools/evo/evo-designer

* Evo Mech Interp Visualizer, an interactive user interface for exploring SAE features:
https://arcinstitute.org/tools/evo/evo-mech-interp

* NVIDIA Evo 2 NIM (generation): https://build.nvidia.com/nvidia/evo2-protein-design

* NVIDIA Evo 2 NIM (forward): https://build.nvidia.com/arc/evo2-40b

» NVIDIA BioNeMo version of Evo 2 code: https://github.com/NVIDIA/bionemo-framework

We make the model parameters available on Hugging Face:

* Evo 2 40B: https://huggingface.co/arcinstitute/evo2_40b

* Evo 2 7B: https://huggingface.co/arcinstitute/evo2_7b

* Evo 2 40B base: https://huggingface.co/arcinstitute/evo2_40b_base
* Evo 2 7B base: https://huggingface.co/arcinstitute/evo2_7b_base

* Evo 2 1B base: https://huggingface.co/arcinstitute/evo2_1b_base
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Figure S1 | Overview of model architecture, training procedure, datasets, and evaluations for Evo 2. (A)
Data composition of OpenGenome2. Showing total eukaryotic genomes per kingdom (left), total base pairs per
training data subset (middle), and detailed breakdown of other/augmented training data subset (right). (B)
Core input-dependent convolution operators in StripedHyena 2, with a diagram showing their composition
in the architecture. (C) Needle-in-a-haystack performance of Evo 2 7B, spanning input contexts of 512 to
1 million tokens. (D) Scaling ablations on OpenGenome2, showing the loss convergence of multi-hybrids
compared to previous generation hybrids and transformers. Models of 7 billion parameters are compared

after pretraining with the same 400 billion tokens.
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Figure S2 | Biosecurity and ethics evaluations for model generation and scoring. To decrease dual use
risks, safety filtering was performed on the training data to remove viral sequences that can infect eukaryotic
hosts. Evo 2 is less performant on eukaryotic viruses, as intended. (A) Perplexity scores for viral sequences
from the USDA Select Agents and Toxins List consistently demonstrate elevated perplexity values compared to
non-pathogenic viruses and prokaryotic viruses. Blue violin plots show the distribution of scores, with individ-
ual data points overlaid representing 512-bp chunks sampled uniformly at random across viral genomes. (B)
Correlation of language model likelihood with experimental deep mutational scanning (DMS) fitness mea-
surements for human viral proteins. Gray bars represent mean correlation coefficients, with individual data
points corresponding to DMS datasets from ProteinGym. Results indicate poor predictive capability on viral
protein mutational effects for Evo 2 and Evo 1 models. (C) Comparative analysis of protein sequence gener-
ation success rates across different model conditions. Bar heights represent percentage amino-acid sequence
recovery in the response sequences when prompted with a portion of a viral protein, with error bars showing
standard deviation across multiple responses to the same prompt. Models were tested with various prompting
proteins (shown on the horizonal axis) with different Evo 2 models (indicated by color). Random sequence
generations are included as a control condition. (D) Analysis of ancestry bias for Evo 2 as a variant effect pre-
dictor compared to baselines, with protein mutations converted to DNA codons. Baseline performance data is
taken from Pathak et al. (2024). Most variant effect predictors have ancestry bias, and score non-European
ancestry variants as more pathogenic. Evo 2 has similar ancestry bias as other population-free methods, ex-
amined by taking both the ratio (heatmap) and mean difference (barplot) of min-max scaled scores of each
population subgroup to the European subgroup.
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Figure S3 | Evo 2 understands mutational effects on protein, RNA, and organismal fitness across all

domains of life. (caption continued on next page)
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(A) Evo 2 predicts mutations to be unlikely in the start codons of protein-coding genes, the first two bases of
each codon of the coding region, and the ribosome-binding sites of the 5’ UTR, across 20 prokaryotic and 16
eukaryotic model species. (B) Evo 2 predicts mutations to be unlikely in the stop codons of protein-coding
genes and the first two bases of each codon of the coding region before the stop codon. (C) Evo 2 40B predicts
lower likelihoods for deletions in miRNA and snoRNA loci compared to Evo 2 7B. Red points in (C) are the
same as is shown in Figure 2D. The same sequences were analyzed with both models. (D) DART-Eval results
for three tasks focused on regulatory DNA sequence elements. Task 1 evaluates models on their ability to
distinguish candidate cis-regulatory elements (cCREs) from shuffled sequences, Task 2 tests their ability to
identify transcription factor (TF) motifs by distinguishing true TF binding sites from control sequences, and
Task 5 predicts variant effects for chromatin-accessibility QTLs (caQTLs, African) and dynamic sequence QTLs
(dsQTLs, Yoruban). Sequence likelihoods were computed under each model and used to measure classification
accuracy. Across these tasks, Evo 2 7B and Evo 2 40B outperformed other baselines. For task 5, while we did
not see strong signal across all models when using the zero-shot log-likelihoods, we observed that the Evo 2
embeddings were predictive of noncoding variant effects. (E) Evo 2 differentiates between genomic sequences
of model organisms that use different stop codons. Show z-score standardized median Alikelihood values
across 5 species, median calculated across ~4,100 randomly selected mutation loci. (F) Evo 2 requires >4kb
of sequence context to recognize codon tables. Showing median z-score standardized median Alikelihood
values for two ciliate genomes across 6 sequence context lengths. (G) Length-adjusted Evo 2 likelihoods
of human mRNA sequences showed a negative correlation with their experimentally measured decay rates.
(H) Evo 2 predictions for IncRNA essentiality improve for IncRNAs that are essential in multiple cell lines.
Comparing effect of scrambled mutations in non-essential genes (N = 5,417), and genes that are essential
in>1 (N = 778), >2 (N = 301), >3 (N = 164), >4 (N = 93), and 5 (N = 46) cell lines. (I) Predictions
for IncRNA essentiality across different models/predictors, shown for each individual cell line. Comparing
effect of scrambled mutations in non-essential genes (N = 5,417) versus essential genes in HAP1 (N = 283),
HEK293FT (N = 267), K562 (N = 278), MDA-MB-231 (N = 270), and THP1 (N = 284).
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Figure S4 | Evo 2 enables accurate human clinical variant effect prediction. (A) Zero-shot prediction of
BRCA1 variant pathogenicity for coding and noncoding SNVs evaluated in aggregate (N = 3,893), showing
AUROC and AUPRC scores across models. (B) Zero-shot prediction of BRCA2 variant pathogenicity for coding
(left, N=3,446), noncoding (center, N = 506), and aggregated (right, N = 5,219) SNVs, showing AUROC and
AUPRC scores across models. (C) Comparison of AUROCs for the supervised classification of test set BRCA1
SNVs trained with embeddings from different blocks of Evo 2 40B and Evo 1. The best-performing layer
(block 20 of Evo 2) was chosen for the next step. (D) Comparison of AUROCs for the supervised classification
of test set BRCAI SNVs, using different window sizes around the variant site to average embeddings for. (E)
Comparison of supervised Evo 2 model predictions to zero-shot Evo 2 and GPN-MSA baselines for all test set
SNVs (N = 779).
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Figure S5 | SAE overview with training data, metrics, and feature embedding. (A) Composition of the
prokaryotic sequences randomly subsampled for SAE training. (B) Composition of the eukaryotic sequences
randomly subsampled for SAE training. (C) Activation density for all layer 26 SAE features over the E. coli
K12 MG1655 genome (left) or for a length-matched segment of human chromosome 17 (right). (D) Mean
non-zero activation for all layer 26 SAE features over the E. coli K12 MG1655 genome (left) or for a length-
matched segment of human chromosome 17 (right). (E) UMAP embedding of layer 26 SAE feature weights
colored by activation density difference between eukaryote and prokaryotic sequence for each feature, with
features presented in Figure 4 labeled.
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Figure S6 | SAE features reveal semantic, structural, and organizational details of prokaryotic genomes.
(A) Diagram depicting the contrastive feature search strategy used to identify and quantify selected features.
(B) Mean activations of the phage feature across phage regions annotated by geNomad and matched-length
bacterial non-phage sequences, across 100 randomly selected GTDB genomes. (C) (i) Scrambling spacer se-
quences does not ablate the phage feature activation pattern on spacer sequences. (ii) Using a constant scram-

bled CRISPR direct repeat sequence ablates phage feature activation for the first two spacers.

(iii) Using

different scrambled sequences instead of CRISPR direct repeats ablates the phage feature activation pattern.
(iv) Natural sequence activation pattern, as in Figure 4B. (D) Additional examples of sequences not annotated
as phage sequences by geNomad which the phage feature activates on. (E) Activations of additional features
associated with open reading frames (ORFs), plus strand or minus strand ORFs ((+) ORF and (-) ORF), and
intergenic loci in a 100 kb region in E. coli K12 MG1655. (F) Mean activations for prokaryotic organizational
features on different annotation types across the E. coli K12 MG1655 genome. (G) Mean activations for protein
secondary structure features on different secondary structure types across ORFs in the E. coli K12 MG1655

genome.
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Figure S7 | SAE features reveal semantic, structural, and organizational details of eukaryotic genomes.
(A) Activations of a frameshift-associated feature in a 100 bp region following different mutation types. (B)
F1, precision, and recall scores across mutation types for feature shown in (A). (C) Activations for SAE features
associated with exons, introns, and their boundaries in the human genome, shown for a 6000 bp region in
chromosome 1. (D) F1, precision, and recall scores for each SAE feature shown in (C) to its corresponding
genomic element. (E) Mean activations for each SAE feature shown in (C) on different annotation types across

the human genome.



https://doi.org/10.1101/2025.02.18.638918
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.18.638918; this version posted February 21, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

>
8

so- il i
60|

2 |
40— i o
20 ’ "
ol

L
ftsZ secY dnaK ayrA pgk1 adh2 cyct hsp70 rps15 act? actB gapdh

Prompt Response

— E»

+—1500-2000 nt—

Model

[T Evo 2 1B (8k) B Evo27B (1M)
B Evo27B (8k) W Evo 2 40B (1M)
B Evo278B(262k) [T Evo 1 7B (8k)

B Evo27B (524k) M Evo1 7B (131k)

Percent Sequence Recovery
(Amino Acid)

H. volcanii E. coli S. cerevisiae C. reinhardtii A. thaliana H. sapiens

& 4 Cl o

W Evo 2generated [ Native protein complex

MT-ND1-ND2-ND3-ND4-ND4L-ND5-ND6 MT-CO1-C02-CO3 MT-ATP6-ATP8 Predicted Alignment Error
MM Score: 0.91 MM Score: 0.94 MM Score: 0.81 [
0 Angstroms 30
D E F
» 08
M. genitalium z 124 120
% 200+
e E 06 w” 160 o » 104 g 100 -
b | g
0 £ § 120 g™ z 4 g 8
5 204 > £ 100- = 64 S 60
M. genitali 4 5 &
. genitalium 8 S 80 £ g 4 < 40
Evo 2 40B-1M & = © 50 = 3
0! ©02{ E4 40 Ea 24 m © 20
. g kd 0~ [ 0
02 03 04 05 06 07 08 09 10 (3“ 00 %’BZ EV(?BZ %’52 EA"/('J"BZ
S 0. 4
pLDDT Score (ESMFold) [ Evo1 Evo2
7B (131K) 40B
G |
S. cerevisiae 5 5
WT
0
S. cerevisiae ° 5
Evo 2 40B-1M
0 r
100 200 300 400 500 600 700 800 900 02 0.3 04 05 06 07 08 09 1.0
H Protein Length (aa) pLDDT Score (ESMFold)
1001 m S. cerevisiae Evo 2 40B-1M P-loop containing p Asparagine
80 nucleoside triphosphate £ Sequ%@gﬁgsga 9%
< | ;
S a S. cerevisiae WT hydrolase ) 90.9%
3 Sequence ID: 67.4% TM Score: 0.86
a 604 TM Score: 0.92
]
G 404
£
)
& 204
04 4 ‘ <I> Septin
. v . . v r v s CDC12
Alpha Beta Extended 3-10 Tun Bend Other/ equence ID: 61.6%
Helix Bridge Strand Helix Loop M Score: 073

Figure S8 | Additional results for unconstrained generation at genome and chromosome scale. (A) Eval-
uating the amino acid recovery for different genes across Evo 2 models. (B) AlphaFold 3 complexes of native
human mitochondria and of Evo 2 generated human, aligned together. (C) PAE of the Evo 2 generated mito-
chondrial complexes from AlphaFold 3. (D) ESMFold pLDDT distributions of natural and Evo 2 generated M.
genitalium genes called by Prodigal. (E) Fraction of Prodigal annotated genes that have Pfam hits comparing
Evo 2 40B with Evo 1 7B-131K M. genitalium generations. (F) Distribution of genes, introns, tRNAs, and pro-
moters on Evo 2 generated S. cerevisiae chromosome compared with natural (gray line). (G) Distribution of
gene length and pLDDT of Evo 2 generated and natural S. cerevisiae genes, annotated by GeneMark-ES. (H)
Distribution of different secondary structures in Evo 2 generated and S. cerevisiae chromosome III wild type
genes. (I) Protein structure of genes from Evo 2 generated S. cerevisiae chromosome compared with the wild
type gene structure and sequence.
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Figure S9 | Generative epigenomics with a uniform proposal. (A) Token-matched performance has worse
inference-time scaling when using a random sequence proposal compared to Evo 2-generated sequences, as
shown across varying token sampling rates. (B) Reduced concordance between Enformer and Borzoi pre-
dictions suggests exploration of potentially adversarial model regimes, demonstrated for two representative
Morse code designs (“ARC” and “EV02”). (C) Dinucleotide frequencies in randomly proposed sequences after
beam search filtering with Enformer and Borzoi still show significant deviation from the baseline mm39 fre-
quency.
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B. Appendix

B.1. Repeat Down Weighting Ablation

We conducted experiments to assess the impact of repeat loss reweighting on downstream performance using
two Striped Hyena 1 models (550M parameters, 8192 sequence length). Both models were trained on a
differently weighted ablation dataset, which was enriched for complete eukaryotic genomes to better evaluate
the effects of repeat down-weighting (Table S5). The models differed only in their treatment of repetitive
sequences: one applied a loss reweighting factor of 0.1 to lowercase sequences, while the other used no
reweighting.

Performance was evaluated using the ClinVar pathogenic versus benign classification benchmark. The
model without loss reweighting achieved an AUROC of 0.63 at 40,000 training steps, compared to 0.73 for
the model with reweighting. Training of the non-reweighted model was discontinued after we observed no
improvement in ClinVar performance beyond 30,000 steps, while the reweighted model continued to show
improvements until the experiment concluded at 100,000 steps, reaching 0.82 AUROC. Based on these results,
we adopted a loss reweighting factor of 0.1 for repetitive sequences in subsequent experiments.

Table S1 | ClinvVar AUROC at 40,000 Steps

Model AUROC
No reweighting 0.63
Repeat Reweighting 0.1 0.73

B.2. Data Composition Effect on Downstream Tasks

We compare Evo 2 7B base with a 7B parameter StripedHyena 2 model trained on an ablation data composition
(Table S5) at 8192 context length. This ablation dataset includes mRNA with the same weight as the final
pretraining dataset, but used whole genomes instead of the eukaryotic genomic windows and augmented
mRNA. We trained for 1.9T tokens until the loss plateaued. We compare the data ablation model with Evo
2 7B base model on zero-shot prediction of ClinVar, SpliceVarDB, and BRCA1, following the same protocol as
before for these evaluations (Section 4.3.12).

Zero-shot evaluations demonstrated improved performance for the final pretraining data composition com-
pared to the data ablation, suggesting that focusing pretraining on functionally enriched regions around genes
can significantly improve downstream performance. Zero-shot AUROC improves for BRCAI variants from
0.793 to 0.891, ClinVar SNV from 0.933 to 0.957, ClinVar non-SNV from 0.897 to 0.939, and SpliceVarDB
(intronic and exonic) from 0.791 to 0.826. We improvements for all subsets except for ClinVar coding SNV,
which slightly decrease. While the data ablation has more weight to noncoding regions, the high effect non-
coding variants considered by these benchmarks are better modeled by the Evo 2 7B base model which was
pretrained on datasets focused around genes. Importantly, the final model learned to better calibrate these
proximal non-coding and coding effects as shown by the improvements when considering coding and non-
coding together. At the same time, Evo 2 7B base performs within 0.01 at DART-eval zero shot evaluations of
the data ablation 7B model (task 1: 0.97 vs 0.98, task 2: 0.63 vs 0.64), suggesting that added pretraining on
whole genomes did not help substantially even for tasks on enhancer regions, consistent with findings from
recent analysis of DNA language models (Patel et al., 2024). These results highlight the importance of data
engineering in DNA language models.

B.3. Evo 2 Mitochondrial Generation BLASTp

We analyze the generated mitochondrial genes of the generated mitochondria shown in Figure 5F using
BLASTp with default parameters and find alignments to a diversity of different animal species.
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Table S2 | Comparing Evo 2 7B base and data ablation model on zero-shot ClinVar classification prediction

Metric  Subset 7B data ablation Evo 2 7B base Difference
AUROC All SNV 0.933 0.957 +0.024
AUPRC All SNV 0.910 0.927 +0.017
AUROC All non-SNV 0.897 0.939 +0.042
AUPRC  All non-SNV 0.846 0.898 +0.052
AUROC Coding SNV 0.851 0.829 -0.022
AUPRC Coding SNV 0.908 0.883 -0.025
AUROC Coding non-SNV 0.893 0.918 +0.025
AUPRC Coding non-SNV 0.946 0.954 +0.008
AUROC Noncoding SNV 0.943 0.976 +0.033
AUPRC Noncoding SNV 0.911 0.956 +0.045
AUROC Noncoding non-SNV 0.867 0.929 +0.062
AUPRC Noncoding non-SNV 0.726 0.825 +0.099

Table S3 | Comparing Evo 2 7B base and data ablation model on zero-shot SpliceVarDB classification

Metric Subset 7B data ablation Evo 2 7B base Difference

AUROC All 0.791 0.826 +0.035
AUPRC Al 0.845 0.873 +0.028
AUROC Exonic 0.666 0.687 +0.021
AUPRC  Exonic 0.510 0.540 +0.030
AUROC Intronic 0.893 0.923 +0.030
AUPRC Intronic 0.956 0.968 +0.012

Table S4 | BRCA1 zero-shot comparison between models

Metric Subset 7B data ablation Evo 2 7B base Difference
Spearman r  Overall 0.358 0.513 +0.155
AUROC Overall 0.793 0.891 +0.098
AUPRC Overall 0.543 0.713 +0.170
AUROC Coding 0.769 0.797 +0.028
AUPRC Coding 0.522 0.534 +0.012
AUROC Noncoding 0.867 0.962 +0.095
AUPRC Noncoding 0.658 0.869 +0.211

Table S5 | Pretraining, midtraining data composition, and data ablation experiment composition

Dataset Pretraining (%) Midtraining (%) Ablation (%)
GTDB + IMG/PR 18 24 9
Metagenomics (MGD DB) 24 5 15
IMG/VR 3 2 1.7
Organelles 0.5 0.25 0
Euk Promoters 0.02 0.01 0.02
ncRNA 2 1 2
Euk mRNAs 9 4.5 9
Euk augmented transcripts 9 4.5 0
Euk 5 kb windows 35 5 0
NCBI: Animalia 0 36 45
NCBI: Plantae 0 12 8.6
NCBI: Fungi 0 4 8
NCBI: Protista 0 0.8 0.8
NCBI: Chromista 0 0.8 0.6
hg38 0 0 0.3
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Table S6 | BLASTp results for genes from Evo 2 generated mitochondria. The amino acid percent sequence ID
is obtained by multiplying the query cover with the sequence identity.

Annotation Sequence ID % Nearest Species

mt-Col 86.94 Muntiacus reevesi
mt-Atp8 77.27 Myotis albescens

mt-Nd4 84.95 Semilabeo notabilis
mt-Nd1 84.59 Phocoena phocoena
mt-Co3 77.31 Alces alces

MT-ND4L 86.73 Bos grunniens

mt-Nd5 78.99 Schizothorax argentatus
MT-ND2 68.45 Rusa unicolor

mt-Co2 88.54 Ovis aries

mt-Atp6 91.59 Alcelaphus buselaphus
mt-Nd3 87.11 Bos indicus

mt-Cytb 75.08 Davidijordania poecilimon
mt-Nd6 94.43 Neolissochilus hendersoni

Table S7 | Comparison of zero-shot variant effect predictions across models, variant types (SNV and non-SNV),
and associated genomic features (coding vs noncoding, intronic vs exonic). In addition to AUROC and AUPRC
performance metrics, counts of variants falling into either positive (N_pos) or negative (N_neg) classes for
each evaluation are also included.

Model Data Feature Var_Type N_pos N_neg N_total AUROC AUPRC
AlphaMissense ClinVar coding SNV 9387 4932 14319 0.958 0.977
CADD ClinVar coding SNV 9387 4932 14319 0.927 0.952
ESM 1b ClinVar coding SNV 9387 4932 14319 0.923 0.957
GPN-MSA ClinVar coding SNV 9387 4932 14319 0.897 0.932
PhyloP ClinVar coding SNV 9387 4932 14319 0.857 0.906
Evo 2 40B ClinVar coding SNV 9387 4932 14319 0.841 0.889
Evo 2 40B base ClinVar coding SNV 9387 4932 14319 0.835 0.886
Evo 2 7B ClinVar coding SNV 9387 4932 14319 0.830 0.883
Evo 2 7B base ClinVar coding SNV 9387 4932 14319 0.829 0.883
DeCodon 200M ClinVar coding SNV 9387 4932 14319 0.686 0.821
ESM-2 650M ClinVar coding SNV 9387 4932 14319 0.677 0.827
ESM-2 3B ClinVar coding SNV 9387 4932 14319 0.656 0.817
EnCodon 620M ClinVar coding SNV 9387 4932 14319 0.626 0.783
Evo 1 ClinVar coding SNV 9387 4932 14319 0.560 0.732
RNA-FM ClinVar coding SNV 9387 4932 14319 0.534 0.632
CodonBERT 87M  ClinVar coding SNV 9387 4932 14319 0.523 0.644
NT 2.5B MS ClinVar coding SNV 9387 4932 14319 0.505 0.658
Evo 2 7B base ClinVar coding non-SNV 831 405 1236 0.918 0.954
Evo 2 7B ClinVar coding non-SNV 831 405 1236 0.916 0.953
Evo 2 40B ClinVar coding non-SNV 831 405 1236 0.914 0.949
Evo 2 40B base ClinVar coding non-SNV 831 405 1236 0.914 0.949
ESM 1b ClinVar coding non-SNV 831 405 1236 0.809 0.920
DeCodon 200M ClinVar coding non-SNV 831 405 1236 0.782 0.898
PhyloP ClinVar coding non-SNV 831 405 1236 0.781 0.868
Evo 1 ClinVar coding non-SNV 831 405 1236 0.692 0.777
RNA-FM ClinVar coding non-SNV 831 405 1236 0.568 0.721
CodonBERT 87M  ClinVar coding non-SNV 831 405 1236 0.551 0.747
ESM-2 650M ClinVar coding non-SNV 831 405 1236 0.535 0.743
EnCodon 620M ClinVar coding non-SNV 831 405 1236 0.522 0.721
NT 2.5B MS ClinVar coding non-SNV 831 405 1236 0.512 0.674
ESM-2 3B ClinVar coding non-SNV 831 405 1236 0.508 0.695
CADD ClinVar noncoding SNV 8123 26638 34761 0.991 0.986

(Continued on next page)
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(Continued from previous page)

Model Data Feature Var_Type N_pos N_neg N_total AUROC AUPRC
Evo 2 40B ClinVar noncoding SNV 8123 26638 34761 0.987 0.974
Evo 2 40B base ClinVar noncoding SNV 8123 26638 34761 0.987 0.972
GPN-MSA ClinVar noncoding SNV 8123 26638 34761 0.981 0.967
Evo 2 7B ClinVar noncoding SNV 8123 26638 34761 0.977 0.960
PhyloP ClinVar noncoding SNV 8123 26638 34761 0.977 0.962
Evo 2 7B base ClinVar noncoding SNV 8123 26638 34761 0.976 0.956
Evo 1 ClinVar noncoding SNV 8123 26638 34761 0.552 0.261
NT 2.5B MS ClinVar noncoding SNV 8123 26638 34761 0.541 0.277
RNA-FM ClinVar noncoding SNV 8123 26638 34761 0.517 0.221
Evo 2 40B ClinVar noncoding non-SNV 688 3206 3894 0.971 0.916
Evo 2 40B base ClinVar noncoding non-SNV 688 3206 3894 0.969 0.912
Evo 2 7B ClinVar noncoding non-SNV 688 3206 3894 0.934 0.850
Evo 2 7B base ClinVar noncoding non-SNV 688 3206 3894 0.929 0.825
PhyloP ClinVar noncoding non-SNV 688 3206 3894 0.926 0.814
Evo 1 ClinVar noncoding non-SNV 688 3206 3894 0.530 0.184
RNA-FM ClinVar noncoding non-SNV 688 3206 3894 0.511 0.185
NT 2.5B MS ClinVar noncoding non-SNV 688 3206 3894 0.503 0.177
CADD ClinVar both SNV 17629 31652 49281 0.984 0.973
GPN-MSA ClinVar both SNV 17629 31652 49281 0.973 0.953
Evo 2 40B ClinVar both SNV 17629 31652 49281 0.970 0.940
Evo 2 40B base ClinVar both SNV 17629 31652 49281 0.969 0.938
Evo 2 7B ClinVar both SNV 17629 31652 49281 0.960 0.931
PhyloP ClinVar both SNV 17629 31652 49281 0.960 0.927
Evo 2 7B base ClinVar both SNV 17629 31652 49281 0.957 0.927
Evo 1 ClinVar both SNV 17629 31652 49281 0.557 0.439
NT 2.5B MS ClinVar both SNV 17629 31652 49281 0.524 0.382
RNA-FM ClinVar both SNV 17629 31652 49281 0.522 0.336
Evo 2 40B ClinVar both non-SNV 1519 3611 5130 0.963 0.930
Evo 2 40B base ClinVar both non-SNV 1519 3611 5130 0.961 0.927
Evo 2 7B ClinVar both non-SNV 1519 3611 5130 0.943 0.908
Evo 2 7B base ClinVar both non-SNV 1519 3611 5130 0.939 0.898
PhyloP ClinVar both non-SNV 1519 3611 5130 0.885 0.814
Evo 1l ClinVar both non-SNV 1519 3611 5130 0.595 0.395
RNA-FM ClinVar both non-SNV 1519 3611 5130 0.514 0.335
NT 2.5B MS ClinVar both non-SNV 1519 3611 5130 0.506 0.294
CADD SpliceVarDB  exonic SNV 434 747 1181 0.799 0.784
Evo 2 40B base SpliceVarDB  exonic SNV 434 747 1181 0.689 0.534
Evo 2 7B base SpliceVarDB  exonic SNV 434 747 1181 0.687 0.540
Evo 2 40B SpliceVarDB  exonic SNV 434 747 1181 0.684 0.523
Evo 2 7B SpliceVarDB  exonic SNV 434 747 1181 0.681 0.533
GPN-MSA SpliceVarDB  exonic SNV 434 747 1181 0.675 0.547
PhyloP SpliceVarDB  exonic SNV 434 747 1181 0.631 0.497
AlphaMissense SpliceVarDB  exonic SNV 434 747 1181 0.594 0.448
RNA-FM SpliceVarDB  exonic SNV 434 747 1181 0.560 0.421
Evo 1 SpliceVarDB  exonic SNV 434 747 1181 0.558 0.413
NT 2.5B MS SpliceVarDB  exonic SNV 434 747 1181 0.489 0.385
CADD SpliceVarDB  intronic SNV 2608 1161 3769 0.943 0.977
Evo 2 40B base SpliceVarDB  intronic SNV 2608 1161 3769 0.930 0.972
Evo 2 7B SpliceVarDB  intronic SNV 2608 1161 3769 0.930 0.973
Evo 2 40B SpliceVarDB  intronic SNV 2608 1161 3769 0.926 0.971
Evo 2 7B base SpliceVarDB  intronic SNV 2608 1161 3769 0.923 0.968
GPN-MSA SpliceVarDB  intronic SNV 2608 1161 3769 0.900 0.960
PhyloP SpliceVarDB  intronic SNV 2608 1161 3769 0.898 0.959
Evo SpliceVarDB  intronic SNV 2608 1161 3769 0.513 0.708
RNA-FM SpliceVarDB  intronic SNV 2608 1161 3769 0.511 0.714
NT 2.5B MS SpliceVarDB  intronic SNV 2608 1161 3769 0.485 0.698
CADD SpliceVarDB  both SNV 3622 2514 6136 0.830 0.873

(Continued on next page)
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Model Data Feature Var_Type N_pos N_neg N_total AUROC AUPRC
Evo 2 7B base SpliceVarDB  both SNV 3622 2514 6136 0.826 0.873
Evo 2 7B SpliceVarDB  both SNV 3622 2514 6136 0.825 0.871
Evo 2 40B base SpliceVarDB  both SNV 3622 2514 6136 0.817 0.855
Evo 2 40B SpliceVarDB  both SNV 3622 2514 6136 0.815 0.851
GPN-MSA SpliceVarDB  both SNV 3622 2514 6136 0.788 0.845
PhyloP SpliceVarDB  both SNV 3622 2514 6136 0.759 0.806
RNA-FM SpliceVarDB  both SNV 3622 2514 6136 0.532 0.628
AlphaMissense BRCA2 coding SNV 470 2976 3446 0.824 0.516
GPN-MSA BRCA2 coding SNV 470 2976 3446 0.794 0.443
CADD BRCA2 coding SNV 470 2976 3446 0.775 0.395
Evo 2 40B base BRCA2 coding SNV 470 2976 3446 0.762 0.333
Evo 2 40B BRCA2 coding SNV 470 2976 3446 0.761 0.323
PhyloP BRCA2 coding SNV 470 2976 3446 0.741 0.329
Evo 2 7B BRCA2 coding SNV 470 2976 3446 0.713 0.292
Evo 2 7B base BRCA2 coding SNV 470 2976 3446 0.680 0.248
Evo 1 BRCA2 coding SNV 470 2976 3446 0.525 0.155
NT 2.5B MS BRCA2 coding SNV 470 2976 3446 0.509 0.137
RNA-FM BRCA2 coding SNV 470 2976 3446 0.506 0.149
CADD BRCA2 noncoding SNV 145 361 506 0.915 0.854
GPN-MSA BRCA2 noncoding SNV 145 361 506 0.908 0.845
Evo 2 40B BRCA2 noncoding SNV 145 361 506 0.899 0.787
Evo 2 40B base BRCA2 noncoding SNV 145 361 506 0.897 0.787
PhyloP BRCA2 noncoding SNV 145 361 506 0.870 0.806
Evo 2 7B base BRCA2 noncoding SNV 145 361 506 0.864 0.692
Evo 2 7B BRCA2 noncoding SNV 145 361 506 0.864 0.701
Evo 1 BRCA2 noncoding SNV 145 361 506 0.563 0.254
RNA-FM BRCA2 noncoding SNV 145 361 506 0.562 0.321
NT 2.5B MS BRCA2 noncoding SNV 145 361 506 0.541 0.342
CADD BRCA2 both SNV 883 4336 5219 0.877 0.731
Evo 2 40B base BRCA2 both SNV 883 4336 5219 0.843 0.554
Evo 2 40B BRCA2 both SNV 883 4336 5219 0.842 0.533
GPN-MSA BRCA2 both SNV 883 4336 5219 0.833 0.569
Evo 2 7B BRCA2 both SNV 883 4336 5219 0.828 0.563
Evo 2 7B base BRCA2 both SNV 883 4336 5219 0.809 0.536
PhyloP BRCA2 both SNV 883 4336 5219 0.757 0.404
Evo 1 BRCA2 both SNV 883 4336 5219 0.536 0.225
RNA-FM BRCA2 both SNV 883 4336 5219 0.511 0.171
NT 2.5B MS BRCA2 both SNV 883 4336 5219 0.511 0.177
AlphaMissense BRCA1 coding SNV 1645 432 2077 0.889 0.690
CADD BRCA1 coding SNV 1645 432 2077 0.814 0.521
Evo 1 BRCAI coding SNV 1645 432 2077 0.519 0.231
Evo 2 40B BRCA1 coding SNV 1645 432 2077 0.843 0.572
Evo 2 40B base BRCA1 coding SNV 1645 432 2077 0.830 0.559
Evo 2 7B BRCAI coding SNV 1645 432 2077 0.823 0.571
Evo 2 7B base BRCA1 coding SNV 1645 432 2077 0.797 0.534
GPN-MSA BRCAI coding SNV 1645 432 2077 0.833 0.579
NT 2.5B MS BRCAI coding SNV 1645 432 2077 0.509 0.212
PhyloP BRCA1 coding SNV 1645 432 2077 0.781 0.454
RNA-FM BRCA1 coding SNV 1645 432 2077 0.497 0.210
CADD BRCA1 noncoding SNV 886 239 1125 0.909 0.800
Evo 1l BRCA1 noncoding SNV 886 239 1125 0.467 0.212
Evo 2 40B BRCA1 noncoding SNV 886 239 1125 0.974 0.903
Evo 2 40B base BRCA1 noncoding SNV 886 239 1125 0.970 0.899
Evo 2 7B BRCA1 noncoding SNV 886 239 1125 0.959 0.870
Evo 2 7B base BRCA1 noncoding SNV 886 239 1125 0.962 0.869
GPN-MSA BRCA1 noncoding SNV 886 239 1125 0.918 0.775
NT 2.5B MS BRCA1 noncoding SNV 886 239 1125 0.649 0.451

(Continued on next page)

16


https://doi.org/10.1101/2025.02.18.638918
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.18.638918; this version posted February 21, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

(Continued from previous page)

Model Data Feature Var_Type N_pos N_neg N_total AUROC AUPRC
PhyloP BRCA1 noncoding SNV 886 239 1125 0.898 0.709
RNA-FM BRCA1 noncoding SNV 886 239 1125 0.468 0.208
CADD BRCA1 both SNV 3070 823 3893 0.876 0.730
Evo 1 BRCA1 both SNV 3070 823 3893 0.497 0.216
Evo 2 40B BRCA1 both SNV 3070 823 3893 0.901 0.677
Evo 2 40B base BRCA1 both SNV 3070 823 3893 0.897 0.673
Evo 2 7B BRCA1 both SNV 3070 823 3893 0.904 0.733
Evo 2 7B base BRCA1 both SNV 3070 823 3893 0.891 0.713
GPN-MSA BRCA1 both SNV 3070 823 3893 0.863 0.650
NT 2.5B MS BRCA1 both SNV 3070 823 3893 0.550 0.285
PhyloP BRCA1 both SNV 3070 823 3893 0.811 0.495
RNA-FM BRCA1 both SNV 3070 823 3893 0.493 0.206
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